Advertisement

Energy of Hydrogenic Impurities in Spherical Quantum Dot

  • Hossein BakhshalizadehEmail author
Research Paper
  • 15 Downloads
Part of the following topical collections:
  1. Physics

Abstract

The present study has provided a new method for calculating the ground state and binding energy. The ground state and binding energy of a hydrogenic impurity in spherical quantum dot calculate by using the Feynman path integral. Hydrogenic impurity located at the center of quantum dot. The framework is center of the effective-mass theory.

Keywords

Quantum dot Hydrogenic impurity Ground state energy Feynman path integral 

References

  1. Aktas S, Boz FK (2008) The binding energy of hydrogenic impurity in multilayered spherical quantum dot. J Phys Condens Matter 40:753Google Scholar
  2. Alves FM, Marques G (2005) Optical transitions in geometrical quantum islands. Superlattices Microstruct 237:248CrossRefGoogle Scholar
  3. Betancur FJ, Sierra-Ortega J, Mikhailov I (2004) Density of impurity states in doped spherical quantum dots. Physica E Low Dimens Syst Nanostruct 23:102CrossRefGoogle Scholar
  4. Billaud B, Truong T (2011) Lamb shift of interactive electron-hole pairs in spherical semiconductor quantum dots. Comput Mater Sci 50:998CrossRefGoogle Scholar
  5. Bose C (1999) Perturbation calculation of impurity states in spherical quantum dots with parabolic confinement. Superlattices Microstruct 4:180Google Scholar
  6. Bose C, Sarkar CK (1998) Effect of a parabolic potential on the impurity binding energy in spherical quantum dots. Superlattices Microstruct 253:238Google Scholar
  7. Chetouani L, Hammann TF (1986) Coulomb greens functions, in an ndimensional euclidean space. J Math Phys 27:2944MathSciNetCrossRefzbMATHGoogle Scholar
  8. Chuu DS, Mei WN (1992) Hydrogenic impurity states in quantum dots and quantum wires. Phys Rev B 46:38983905CrossRefGoogle Scholar
  9. Duru I, Kleinert H (1979) Solution of the path integral for the H-atom. Phys Lett B 84:185–188MathSciNetCrossRefGoogle Scholar
  10. El-moghraby D, Harrison P (2003) The effect of inter-dot separation on the finite difference solution of vertically aligned coupled quantum dots. Comput Phys Commun 155:236CrossRefGoogle Scholar
  11. El-Said M, Tomak M (1991) Photoionization of impurities in infinite-barrier quantum wells. J Phys Chem Solids 52:603CrossRefGoogle Scholar
  12. El-Said M, Tomak M (1992) Photoionization of impurities in quantum wells. Solid State Commun 82:721CrossRefGoogle Scholar
  13. Ferry DK (1997) Transport in nanostructures. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  14. Feynman RP, Hibbs AR (2005) Quantum mechanics and path integrals: emended edition. McGraw-Hill, New YorkzbMATHGoogle Scholar
  15. Grodshteyn I, Ryzhik I (1971) Table of integrals, series and products. Academic Press, CambridgeGoogle Scholar
  16. Grosche C (1990) Path integrals for potential problems with \(\delta\)-function perturbation. J Phys A Math Gen 23:5205MathSciNetCrossRefzbMATHGoogle Scholar
  17. Grosche C, Steiner F (1995) How to solve path integrals in quantum mechanics. J Math Phys 36:2354MathSciNetCrossRefzbMATHGoogle Scholar
  18. Ham H, Lee CJ (2003) Photoionization cross section of hydrogenic impurities in spherical quantum dot: infinite well model. J Korean Phys Soc 42:s688Google Scholar
  19. Harrison P (2009) Quantum wells, wires and dots: theoretical and computational physics, 3rd edn. Wiley, HobokenGoogle Scholar
  20. Ho R, Inomata A (1982) Exact-path-integral treatment of the hydrogen atom. Phys Rev Lett 48:231MathSciNetCrossRefGoogle Scholar
  21. Hsieh C-Y (2000) Lower lying states of hydrogenic impurity in a multi-layer quantum dot. Chin J Phys 38:478Google Scholar
  22. Hsieh CY, Chuu DS (2000) Donor states in a multi-layered quantum dot. J Phys Condens Matter 12:8641CrossRefGoogle Scholar
  23. Hsieh C-Y, Chuu D-S (2000) Donor states in a multi-layered quantum dot. J Phys Condens Matter 12:86418653CrossRefGoogle Scholar
  24. Inomata A (1984) Alternative exact-path-integral treatment of the hydrogen atom. Phys Lett A 101:253MathSciNetCrossRefGoogle Scholar
  25. Karaca Boz BF, Aktas S, Okan SE (2009) Geometric effects on energy states of a hydrogenic impurity in multilayered spherical quantum dot. Appl Surf Sci 255:6561CrossRefGoogle Scholar
  26. Klein MC, Hache F, Ricard D, Flytzanis C (1990) Size dependence of electron-phonon coupling in semiconductor nanospheres: the case of cdse. Phys Rev B 42:11123CrossRefGoogle Scholar
  27. Lina Y-Y, Singh J (2002) Self-assembled quantum dots: a study of strain energy and intersubband transitions. J Appl Phys 92:6205CrossRefGoogle Scholar
  28. Ling PA (2005) Quantum dots: new research. Nova Science Publishers, Inc, HauppaugeGoogle Scholar
  29. Oliveira LN, Freire JAK, Farias G (2004) Effects of interfacial profiles on quantum levels in \(In_xGa_{1-x}As/GaAs\) graded spherical quantum dots. Appl Surf Sci 237:266CrossRefGoogle Scholar
  30. Peter AJ (2006) Polarizabilities of shallow donors in spherical quantum dots with parabolic confinement. Phys Lett A 355:59CrossRefGoogle Scholar
  31. Porras-Montenegro N, Perez-Merchancano ST (1992a) Hydrogenic impurities in GaAs- (Ga, Al) as quantum dots. Phys Rev B 46:9780CrossRefGoogle Scholar
  32. Porras-Montenegro N, Perez-Merchancano ST (1992b) Hydrogenic impurities in GaAs- (Ga, Al)as quantum dots. Phys Rev B 46:97809783CrossRefGoogle Scholar
  33. Sahin M, Tomak M (2005) Electronic structure of a many-electron spherical quantum dot with an impurity. Phys Rev B 72:1Google Scholar
  34. Sahin M, Tomak M (2008) Photoionization cross section and intersublevel transitions in a one- and two-electron spherical quantum dot with a hydrogenic impurity. Phys Rev B 77:1Google Scholar
  35. Sakurai JJ (1985) Modern quantum mechanics. Addison-Wesley, BostonGoogle Scholar
  36. Sali A, Fliyou M, Loumrhari H (1998) The effect of the electron-longitudinal optical phonons interaction on the photoionization in a quantum well. J Phys Chem Solids 59:625CrossRefGoogle Scholar
  37. Sarkisyan HA (2004) Direct optical absorption in cylindrical quantum dot. Mod Phys Lett B 18:443CrossRefGoogle Scholar
  38. Sercel PC, Vahala KJ (1990) Analytical formalism for determining quantum-wire and quantum-dot band structure in the multiband envelope-function approximation. Phys Rev B 42:3690CrossRefGoogle Scholar
  39. Steiner F (1984) Exact path integral treatment of the hydrogen atom. Phys Lett A 106:263MathSciNetGoogle Scholar
  40. Tulkki J, Henamaki A (1995) Confinement effect in a quantum well dot induced by an InP stressor. Phys Rev B 52:8239CrossRefGoogle Scholar
  41. Wagner UMM, Chaplik A (1992) Spin-singlet-spin-triplet oscillations in quantum dots. Phys Rev B 45:1951CrossRefGoogle Scholar
  42. Xia J-B (1989) Electronic structures of zero-dimensional quantum wells. Phys Rev B 40:8500CrossRefGoogle Scholar
  43. Xie H-J, Chen C-Y (1998) A bound polaron in a spherical quantum dot. Eur Phys J B 5:215CrossRefGoogle Scholar
  44. Yuan X-Z, Zhu K-D (2004) Impurity states in a quantum dot with the shape of spherical cap. Physica E Low Dimens Syst Nanostruct 25:93CrossRefGoogle Scholar
  45. Zhang L, Xie H-J, Chen C-Y (2003) A bound polaron in a spherical quantum dot with a finite confining potential. Chin J Phys 41:148Google Scholar
  46. Zhu JL, Gu BL (1990) Confined electron and hydrogenic donor states in a spherical quantum dot of \(GaAs - Ga_{1- x}Al_xAs\). Phys Rev B 41:6001CrossRefGoogle Scholar
  47. Zhu J-L, Xiong J-J, Gu B-L (1990) Confined electron and hydrogenic donor states in a spherical quantum dot of \(GaAs-Ga_{1-x}Al_xAs\). Phys Rev B 41:6001CrossRefGoogle Scholar

Copyright information

© Shiraz University 2019

Authors and Affiliations

  1. 1.Department of ScienceJahrom Branch Islamic Azad UniversityJahromIran

Personalised recommendations