The Role of the Massless Phantom Term in the Stability of a Non-Topological Soliton Solution

  • M. MohammadiEmail author
Research Paper
Part of the following topical collections:
  1. Physics


We intend to introduce classically a special Lagrangian density in such a way that, firstly, it leads to a special non-topological solitary wave solution, secondly, the stability of that is guaranteed properly, and thirdly, its dominant dynamical equations reduce to the standard nonlinear Klein–Gordon equations. For these purposes, we have to consider a new term in the Lagrangian density, whose role is like a massless phantom that surrounds the special solitary wave solution and resists any change in its internal structure.


Soliton Solitary wave Klein–Gorgon Nonlinear Q-ball Stability Massless Phantom 


  1. Anagnostopoulos KN, Axenides M et al (2001) Large gauged Q balls. Phys Rev D 64:125006CrossRefGoogle Scholar
  2. Axenides M, Komineas S et al (2000) Dynamics of nontopological solitons: Q balls. Phys Rev D 61:085006CrossRefGoogle Scholar
  3. Bazeia D, Losano L et al (2016) Compact Q-balls. Phys Lett B 758:146–151CrossRefzbMATHGoogle Scholar
  4. Bazeia D, Losano L et al (2017) Split Q-balls. Phys Lett B 765:359MathSciNetCrossRefzbMATHGoogle Scholar
  5. Bazeia D, Marques MA, Menezes R (2016) Exact solutions, energy, and charge of stable Q-balls. Eur Phys J C 76:241CrossRefGoogle Scholar
  6. Bazeia D, Belendryasova E, Gani VA (2018) Scattering of kinks of the sinh-deformed \(\varphi ^4\) model. Eur Phys J C 78:340CrossRefGoogle Scholar
  7. Bowcock P, Foster D, Sutcliffe P (2009) Q-balls, integrability and duality. J Phys A Math Theor 42:085403MathSciNetCrossRefzbMATHGoogle Scholar
  8. Campbell DK, Peyrard M (1986) Kink-antikink interactions in the double sine-Gordon equation. Physica D 19:165MathSciNetCrossRefGoogle Scholar
  9. Campbell DK, Peyrard M (1986) Solitary wave collisions revisited. Physica D 18:47MathSciNetCrossRefzbMATHGoogle Scholar
  10. Campbell DK, Schonfeld JS, Wingate CA (1983) Resonance structure in kink-antikink interactions in \(\phi ^4\) theory. Physica D 9:1CrossRefGoogle Scholar
  11. Charkina OV, Bogdan MM (2006) Internal modes of solitons and near-integrable highly-dispersive nonlinear systems. Symmetry Integr Geom 2:047MathSciNetzbMATHGoogle Scholar
  12. Coleman S (1985) Q-balls. Nucl Phys B 262:263MathSciNetCrossRefGoogle Scholar
  13. Das A (1989) Integrable models. World Scientific, SingaporeCrossRefzbMATHGoogle Scholar
  14. Dorey P, Romańczukiewicz T (2018) Resonant kink-antikink scattering through quasinormal modes. Phys Lett B 779:117–123CrossRefGoogle Scholar
  15. Dorey P, Mersh K, Romanczukiewicz T, Shnir Y (2011) Kink-antikink collisions in the \(\varphi ^6\) model. Phys Rev Lett 107:091602CrossRefGoogle Scholar
  16. Drazin PG, Johnson RS (1989) Solitons: an Introduction. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  17. El-Nabulsi AR (2013) Non-linear dynamics with non-standard Lagrangians. Qual Theory Dyn Syst 12:273MathSciNetCrossRefzbMATHGoogle Scholar
  18. El-Nabulsi RA (2014) Nonlinear integro-differential Einstein’s field equations from nonstandard Lagrangians. Can J Phys 92:1149–1153CrossRefGoogle Scholar
  19. El-Nabulsi RA (2015) Classical string field mechanics with non-standard Lagrangians. Math Sci 9:173–179MathSciNetCrossRefzbMATHGoogle Scholar
  20. Gani VA, Kudryavtsev AE (1999) Kink-antikink interactions in the double sine-Gordon equation and the problem of resonance frequencies. Phys Rev E 60:3305CrossRefGoogle Scholar
  21. Gani VA, Kudryavtsev AE, Lizunova MA (2014) Kink interactions in the \((1+1)\)-dimensional \(\varphi ^6\) model. Phys Rev D 89:125009CrossRefGoogle Scholar
  22. Gani VA, Lensky V, Lizunova MA (2015) Kink excitation spectra in the (1+1)-dimensional \(\varphi ^8\) model. JHEP 8:147MathSciNetCrossRefzbMATHGoogle Scholar
  23. Gani VA, Moradi Marjane A, Askari A et al (2018) Scattering of the double sine-Gordon kinks. Eur Phys J C 78:345CrossRefGoogle Scholar
  24. Gharaati AR, Riazi N, Mohebbi F (2006) Internal modes of relativistic solitons. Int J Theor Phys 45:53CrossRefzbMATHGoogle Scholar
  25. Goodman RH, Haberman R (2005) Kink-antikink collisions in the \(\phi ^4\) equation: the n-bounce resonance and the separatrix map. SIAM J Appl Dyn Syst 4:1195MathSciNetCrossRefzbMATHGoogle Scholar
  26. Khare A, Christov IC, Saxena A (2014) Successive phase transitions and kink solutions in \(\phi ^8\), \(\phi ^{10}\) and \(\phi ^{12}\) field theories. Phys Rev E 90:023208CrossRefGoogle Scholar
  27. Kovtun A, Nugaev E, Shkerin A (2018) Vibrational modes of Q-balls. Phys Rev D 98:096016CrossRefGoogle Scholar
  28. Lamb GL Jr (1980) Elements of soliton theory. Wiley, HobokenzbMATHGoogle Scholar
  29. Lee TD, Pang Y (1992) Nontopological solitons. Phys Rep 221:251MathSciNetCrossRefGoogle Scholar
  30. Mahzoon MH, Riazi N (2007) Nonlinear electrodynamics and NED-inspired chiral solitons. Int J Theor Phys 46:823CrossRefzbMATHGoogle Scholar
  31. Manton N, sutcliffe P (2004) Topological solitons. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  32. Mohammadi M, Olamaei AR (2017) Soliton-like solutions of the complex non-linear Klein-Gordon systems in 1 + 1 dimensions. IJAA 4:57–68Google Scholar
  33. Mohammadi M, Riazi N (2011) Approaching integrality in bi-dimensional nonlinear field equations. Prog Theor Phys 126:237CrossRefzbMATHGoogle Scholar
  34. Mohammadi M, Riazi N (2014) Bi-dimensional soliton-like solutions of the nonlinear complex sine-Gordon system. Prog Theor Exp Phys 2014:023A03CrossRefzbMATHGoogle Scholar
  35. Mohammadi M, Riazi N (2019) The affective factors on the uncertainty in the collisions of the soliton solutions of the double field sine-Gordon system. Commun Nonlinear Sci Numer Simul 72:176–193MathSciNetCrossRefGoogle Scholar
  36. Mohammadi M, Riazi N, Azizi A (2012) Radiative properties of kinks in the \(\sin ^4 (\phi )\) system. Prog Theor Phys 128:615CrossRefGoogle Scholar
  37. Moradi Marjaneh A, Gani VA, Saadatmand D (2017) Multi-kink collisions in the \(\phi ^6\) model. J High Energy Phys 2017:28MathSciNetCrossRefzbMATHGoogle Scholar
  38. Musielak ZE (2008) Standard and non-standard Lagrangians for dissipative dynamical systems with variable coefficients. J Phys A Math Theor 41:055205MathSciNetCrossRefzbMATHGoogle Scholar
  39. Panin AG, Smolyakov MN (2017) Problem with classical stability of U(1) gauged Q-balls. Phys Rev D 95:065006MathSciNetCrossRefGoogle Scholar
  40. Peyrard M, Campbell DK (1983) Kink antikink interactions in a modified sine-Gordon model. Physica D 9:33CrossRefGoogle Scholar
  41. Peyravi M, Montakhab A, Riazi N, Gharaati A (2009) Interaction properties of the periodic and step-like solutions of the double-Sine-Gordon equation. Eur Phys J B 72:269CrossRefzbMATHGoogle Scholar
  42. Polyakov AM (1974) Particle spectrum in quantum field theory. JETP Lett 20:430Google Scholar
  43. Popov CA (2005) Perturbation theory for the double sine-Gordon equation. Wave Motion 42:309MathSciNetCrossRefzbMATHGoogle Scholar
  44. Rajaraman R (1982) Solitons and instantons. Elsevier, AmsterdamzbMATHGoogle Scholar
  45. Riazi N (2011) Wave-particle duality in nonlinear Klein-Gordon equation. Int J Theor Phys 50:3451MathSciNetCrossRefzbMATHGoogle Scholar
  46. Saha A, Talukdar B (2014) Inverse variational problem for nonstandard Lagrangians. Rep Math Phys 73:299–309MathSciNetCrossRefzbMATHGoogle Scholar
  47. Shiromizu T (1998) Generation of a magnetic field due to excited Q-balls. Phys Rev D 58:107301CrossRefGoogle Scholar
  48. Shiromizu T, Uesugi T, Aoki M (1999) Perturbation analysis of deformed Q-balls and primordial magnetic field. Phys Rev D 59:125010CrossRefzbMATHGoogle Scholar
  49. Skyrme THR (1961) A non-linear field theory. Proc R Soc 260:127MathSciNetzbMATHGoogle Scholar
  50. Skyrme THR (1962) A unified field theory of mesons and baryons. Nucl. Phys 31:556MathSciNetCrossRefGoogle Scholar
  51. Smolyakov MN (2018) Perturbations against a Q-ball: charge, energy, and additivity property. Phys Rev D 97:045011MathSciNetCrossRefGoogle Scholar
  52. ’t Hooft G (1974) Magnetic monopoles in unified gauge theories. Nucl Phys B 79:276MathSciNetCrossRefGoogle Scholar
  53. Tsumagari MI, Copeland EJ, Saffin PM (2008) Some stationary properties of a Q-ball in arbitrary space dimensions. Phys Rev D 78:065021CrossRefGoogle Scholar
  54. Vasheghani A, Riazi N (1996) Isovector solitons and Maxwell’s equations. Int J Theor Phys 35:587MathSciNetCrossRefzbMATHGoogle Scholar
  55. Wazwaz AM (2004) The tanh method for traveling wave solutions of nonlinear equations. Appl Math Comput 154:713MathSciNetzbMATHGoogle Scholar
  56. Wazwaz AM (2006) Compactons, solitons and periodic solutions for some forms of nonlinear Klein-Gordon equations. Chaos Solitons Fractals 28:1005MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Shiraz University 2019

Authors and Affiliations

  1. 1.Physics DepartmentPersian Gulf UniversityBushehrIran

Personalised recommendations