Advertisement

Effect on Electrical Properties of Gd-Doped BiFeO3–PbZrO3

  • S. K. Satpathy
  • N. K. Mohanty
  • A. K. Behera
  • Banarji BeheraEmail author
Research Paper
  • 7 Downloads
Part of the following topical collections:
  1. Physics

Abstract

The (1 − x)(BiFe1−yGdyO3)−x(PbZrO3) [x = 0.5, y = 0.05, 0.10, 0.15, 0.20] were synthesized using a high-temperature solid-state reaction technique. X-ray analysis confirms the formation of the composites. The dielectric properties of the composites were studied. The hysteresis loop suggested that the materials were lossy. The impedance parameters were studied in a wide range of frequency (102–106 Hz) at different temperatures for all samples. The Nyquist plot suggested the contribution of bulk effect as well as grain boundary effect and the bulk resistance deceased with a rise in temperature for all the samples. The electrical transport confirmed the presence of hopping mechanism in the materials. The dc conductivity of the materials increased with a rise in temperature. The frequency variation of ac conductivity obeyed the Jonscher’s universal power law and confirmed the small polaron (SP) tunneling effect due to low activation energy for all the samples. Temperature dependence of dc and ac conductivity indicated the thermally activated process of the materials.

Keywords

XRD Dielectric constant Impedance Electrical conductivity Relaxation Phenomena 

Notes

Acknowledgements

The authors acknowledge the financial support through DRS-I of UGC under SAP, School of Physics, Sambalpur University. One of the authors BB acknowledges the SERB under DST Fast Track Scheme for Young Scientist (Project No. SR/FTP/PS-036/2011) New Delhi, India).

References

  1. Behera AK, Mohanty NK, Satpathy SK, Behera B, Nayak P (2014) Investigation of complex impedance and modulus properties of Nd doped 0.5BiFeO3–0.5PbTiO3 multiferroic composites. Cent Eur J Phys 12:851Google Scholar
  2. Bibes M, Barthélémy A (2008) Towards a magnetoelectric memory. Nat Mater 7:425CrossRefGoogle Scholar
  3. Bonanos N, Steele BCH, Buttler EP, Johnson WB, Worrell WL, Macdonald DD, Mckubre MCH (1987) Applications of impedance spectroscopy. In: Macdonald JR (ed) impedance spectroscopy. Wiley, New York, p 191Google Scholar
  4. Catalan G (2012) On the link beween octahedral rotations and conductivity in the domain walls of BiFeO3. Ferroelectrics 433:65CrossRefGoogle Scholar
  5. Catalan G, Scott JF (2009) Physics and applications of bismuth ferrite. Adv Mater 21:2463CrossRefGoogle Scholar
  6. Chang W, Kirchoefer SW, Pond JM, Bellotti JA, Qadri SB (2004) Room-temperature tunable microwave properties of strained SrTiO3 films. J Appl Phys 96:11Google Scholar
  7. Chen XZ, Yang RL, Zhou JP, Chen XM, Jiang Q, Liu P (2013) Dielectric and magnetic properties of multiferroic BiFeO3 ceramics sintered with the powders prepared by hydrothermal method. Solid State Sci 19:117CrossRefGoogle Scholar
  8. Elliott SR (1987) A.c. conduction in amorphous chalcogenide and pnictide semiconductors. Adv Phys 36:135CrossRefGoogle Scholar
  9. Gerson R, Chou PC, James WJ (1967) Ferroelectric properties of PbZrO3–BiFeO3 solid solutions. J Appl Phys 38:55CrossRefGoogle Scholar
  10. Greičius S, Banys J, Szafraniak-Wiza I (2009) Dielectric investigations of BiFeO3 ceramics. Process Appl Ceram 3:85CrossRefGoogle Scholar
  11. Hasan BA (2013) Dielectric properties of vacuum evaporated SnS thin films. J Nano Adv Mater 1:87Google Scholar
  12. Hodge IM, Ingram MD, West AR (1976) Impedance and modulus spectroscopy of polycrystalline solid electrolytes. J Electroanal Chem 74:125CrossRefGoogle Scholar
  13. Jang JH, Yoon KH, Shin H (1998) Electric fatigue in sol–gel prepared Pb(Zr, Sn, Ti)NbO3 thin films. J Appl Phys Lett 73:1823CrossRefGoogle Scholar
  14. Jonscher AK (1977) The ‘universal’ dielectric response. Nature 267:673CrossRefGoogle Scholar
  15. Ketsuwan P, Prasatkhetragarn A, Triamnuk N, Huang CC, Ngamjarurojana A, Ananta S, Cann DP, Yimnirun R (2009) Electrical conductivity and dielectric and ferroelectric properties of chromium doped lead zirconate titanate ceramic. Ferroelectrics 382:49CrossRefGoogle Scholar
  16. Khomchenko VA, Kiselev DA, Kopcewicz M, Maglione M, Shvartsman VV, Borisov P, Kleemann W, Lopes AML, Pogorelov YG, Araujo J, Rubinger RM, Sobolev NA, Vieira JM, Kholkin AL (2009) Doping strategies for increased performance in BiFeO3. J Magn Magn Mater 321:1692CrossRefGoogle Scholar
  17. Kiselev SV, Ozerov RP, Zhdanov GS (1963) Detection of magnetic order in ferroelectric BiFeO3 by neutron diffraction. Soviet Phys Dokl 7:742Google Scholar
  18. Kubel F, Schmid H (1990) Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3. Acta Crystallogr B 46:698CrossRefGoogle Scholar
  19. Lancaster MJ, Powell J, Porch A (1998) Thin-film ferroelectric microwave devices. Supercond Sci Technol 11:1323CrossRefGoogle Scholar
  20. Lin GH, Fu R, He S, Sun J, Zhang X, Sengupta L (2002) Reliability and stability of novel tunable thin film. Mater Res Soc Symp Proc 720:15Google Scholar
  21. Maksymovych P, Seidel J, Chu YH, Wu P, Baddorf AP, Chen LQ, Kalinin SV, Ramesh R (2011) Dynamic conductivity of ferroelectric domain walls in BiFeO3. Nano Lett 11:1906CrossRefGoogle Scholar
  22. Mazumder R, Sen A (2009) Effect of Pb-doping on dielectric properties of BiFeO3 ceramics. J Alloys Compd 475:577CrossRefGoogle Scholar
  23. Parui J, Krupanidhi SB (2006) Dielectric properties of (110) oriented and La-modified thin films grown by sol–gel process on substrate. J Appl Phys 100:044102CrossRefGoogle Scholar
  24. Pattanayak S, Choudhary RNP, Das PR (2014) Effect of praseodymium on electrical properties of BiFeO3 multiferroic. J Electron Mater 43:470CrossRefGoogle Scholar
  25. Patterson A (1939) The Scherrer formula for x-ray particle size determination. Phys Rev 56:978CrossRefzbMATHGoogle Scholar
  26. Pradhan DK, Choudhary RNP, Rinaldi C, Katiyar RS (2009) Effect of Mn substitution on electrical and magnetic properties of Bi0.90La0.10FeO3. J Appl Phys 106:024102CrossRefGoogle Scholar
  27. Qi X, Zhou J, Yue Z, Gui Z, Li L, Buddhudu S (2004) A ferroelectric ferromagnetic composite material with significant permeability and permittivity. Adv Funct Mater 14:920CrossRefGoogle Scholar
  28. Rao BUM, Srinivasan G, Babu VS, Seehra MS (1991) Magnetic properties of amorphous BiFeO3–PbZrO3 sputtered films. J Appl Phys 69:5463CrossRefGoogle Scholar
  29. Satpathy SK, Mohanty NK, Behera AK, Behera B, Nayak P (2013) Electrical conductivity of Gd doped BiFeO3–PbZrO3. Compos Front Mater Sci 7:295CrossRefGoogle Scholar
  30. Satpathy SK, Mohanty NK, Behera AK, Behera B (2014) Dielectric and electrical properties of 0.5 (BiGd0. 05Fe0. 95O3)–0.5 (PbZrO3), composite. Mater Sci Poland 32:59CrossRefGoogle Scholar
  31. Sen S, Pramanik P, Choudhary RNP (2006) Impedance spectroscopy study of the nanocrystalline ferroelectric (PbMg)(ZrTi)O3 system. Appl Phys A 82:549CrossRefGoogle Scholar
  32. Sengupta SS, Roberts D, Li JF, Kim MC, Payne DA (1995) Field-induced phase switching and electrically driven strains in sol-gel derived antiferroelectric (Pb, Nb)(Zr, Sn, Ti)O3 thin layers. J Appl Phys 78:1171CrossRefGoogle Scholar
  33. Sengwa RJ, Choudhary S, Sankhla S (2008) Low frequency dielectric relaxation processes and ionic conductivity of montmorillonite clay nanoparticles colloidal suspension in poly(vinyl pyrrolidone)-ethylene glycol blends. Express Polym Lett 2:800CrossRefGoogle Scholar
  34. Sengwa RJ, Sankhla S, Choudhary S (2009) Dielectric dispersion and ionic conduction in hydrocolloids of poly (vinyl alcohol)–poly (ethylene oxide) blend–montmorillonite clay nanocomposites. Indian J Eng Mater Sci 16:395Google Scholar
  35. Seveno R, Gundel HW, Seifert S (2001) Preparation of antiferroelectric PbZrxTi1−xO3 thin films on LaSrMnO3-coated steel substrates. Appl Phys Lett 79:4204CrossRefGoogle Scholar
  36. Shihub S, Gould RD (1995) Frequency dependence of electronic conduction parameters in evaporated thin films of cobalt phthalocyanine. Thin Solid Films 254:187CrossRefGoogle Scholar
  37. Spaldin NA, Cheong SW, Ramesh R (2010) Multiferroics: past, present, and future. Phys Today 63:38CrossRefGoogle Scholar
  38. Tagantsev AK, Vaideeswaran K, Vakhrushev SB, Filimonov AV, Burkovsky RG, Shaganov A, Andronikova D, Rudskoy AI, Baron AQR, Uchiyama H, Chernyshov D, Bosak A, Ujma Z, Roleder K, Majchrowski A, Ko JH, Setter N (2013) The origin of antiferroelectricity in PbZrO3. Nat Commun 4:1CrossRefGoogle Scholar
  39. Triberis GP, Dimakogianni M (2009) Field and temperature dependence of the small polaron hopping electrical conductivity in 1D disordered systems. J Phys Condens Matter 21:385406CrossRefGoogle Scholar
  40. Vengalisa B, Devensona J, Oginskisa AK, Butkute R, Maneikisa A, Steikunien A, Dapkusa L, Banysb J, Kinka M (2008) Growth and investigation, of heterostructures based, on multiferroic BiFeO3. Acta Phys Pol, A 113:1095CrossRefGoogle Scholar
  41. Vopsaroiu M, Cain MG, Sreenivasulu G, Srinivasen G, Balbashov AM (2012) Multiferroic composite for combined detection of static and alternating magnetic fields. Mater Lett 66:282CrossRefGoogle Scholar
  42. Wen S, Wang S, Chung DDL (1999) Carbon fiber structural composites as thermistors. Sensors Actuator 78:180CrossRefGoogle Scholar
  43. Wu E (1989) POWD, an interactive program for powder diffraction data interpretation and indexing. J Appl Cryst 22:506CrossRefGoogle Scholar
  44. Xu B, Moses P, Pai NG, Cross LE (1998) Charge release of lanthanum-doped lead zirconate titanate stannate antiferroelectric thin films. Appl Phys Lett 72:593CrossRefGoogle Scholar
  45. Xu B, Ye Y, Cross LE (2000) Dielectric properties and field-induced phase switching of lead zirconate titanate stannate antiferroelectric thick films on silicon substrates. J Appl Phys 87:2507CrossRefGoogle Scholar
  46. Yamakawa K, McKinstry ST, Dougherty JP, Krupanidhi SB (1995) Reactive magnetron co-sputtered antiferroelectric lead zirconate thin films. Appl Phys Lett 67:2014CrossRefGoogle Scholar
  47. Zangina T, Hassan J, Matori KA, Azis RS, Ahmadu U, See A (2016) Sintering behavior, ac conductivity and dielectric relaxation of Li1.3Ti1.7Al0.3(PO4)3 NASICON compound. Results Phys 6:719CrossRefGoogle Scholar

Copyright information

© Shiraz University 2019

Authors and Affiliations

  • S. K. Satpathy
    • 1
  • N. K. Mohanty
    • 2
  • A. K. Behera
    • 3
  • Banarji Behera
    • 3
    Email author
  1. 1.Centurion University of Technology and ManagementBhubaneswarIndia
  2. 2.Centurion University of Technology and ManagementBolangirIndia
  3. 3.Materials Research Laboratory, School of PhysicsSambalpur UniversityJyoti Vihar, BurlaIndia

Personalised recommendations