Magnetite Chemistry in the Porphyry Copper Systems of Kerman Cenozoic Magmatic Arc, Kerman, Iran

  • Alireza ZarasvandiEmail author
  • Majid Heidari
  • Mohsen Rezaei
  • Johann Raith
  • Sina Asadi
  • Adel Saki
  • Amir Azimzadeh
Research Paper
Part of the following topical collections:
  1. Geology
  2. Geology


The present work attempts to characterize magnetite chemistry in some collisional (Chahfiruzeh and Keder; Miocene) and pre-collisional (Reagan and Daralou; Eocene–Oligocene) porphyry copper systems hosted in the Kerman Cenozoic Magmatic Arc (KCMA). EPMA results for magnetite samples show collisional deposits have higher average contents of Fe and Ca compared to those of pre-collisional systems. Nevertheless, magnetite samples of pre-collisional porphyry Cu systems contain elevated Si values. Highlightly, the frequency of V and Ca in magnetite have a direct relation with mineralization potential of studied deposits decreasing from Chahfiruzeh to Keder, Daralou and Reagan. V/Cr and V/Al in the analyzed magnetite samples show that Reagan porphyry system is quite different than other studied deposits. Moreover, average concentrations of Mo and Cu reach the highest in collisional and pre-collisional deposits, respectively. According to Fe/(V + Ti) diagram, most of the studied magnetite samples have re-equilibrated magmatic nature. Al + Mn versus V + Ti and Ni (Cr + Mn) versus Ti + V diagrams also confirmed that all magnetite samples from collisional and pre-collisional deposits are analogous to those reported previously for porphyry Cu systems. Regarding the condition of oxygen fugacity, based on Ni versus V diagram, the Reagan deposit (pre-collisional) has the highest oxygen fugacity, while the Daralou deposit (pre-collisional) and collisional deposits (Chahfiruzeh and Keder) exhibit moderate to high fugacity. Ti + V versus Al + Mn show that selected deposits were approximately formed in the same temperature conditions.


Kerman Cenozoic Magmatic Arc Collisional Pre-collisional Porphyry deposit Magnetite 



This research was made possible by the help of the office of vice-chancellor for Research and Technology, Shahid Chamran University of Ahvaz, for research Grant in 2017–2018. We acknowledge their support. The authors highly appreciate the efforts of Dr. Federica Zaccarini for EMPA analysis. We also gratefully acknowledge the staff of the National Iranian Copper Industries Company (NICICO) for helping us in sampling.


  1. Aghazadeh M, Hou Z, Badrzadeh Z, Zhou L (2015) Temporal–spatial distribution and tectonic setting of porphyry copper deposits in Iran: constraints from zircon U–Pb and molybdenite Re–Os geochronology. Ore Geol Rev 70:385–406CrossRefGoogle Scholar
  2. Ahmadian J, Haschke M, McDonald I, Regelous M, Ghorbani M, Emami M et al (2009) High magmatic flux during Alpine-Himalayan collision: constraints from the Kal-e-Kafi complex, central Iran. Geol Soc Am Bull 121:857–868CrossRefGoogle Scholar
  3. Alimohammadi M, Alirezaei S, Ghaderi M, Kontak DJ (2016) The geology, petrogenesis, geological setting of the volcanic and plutonic rocks from Daraloo and sarmeshk porphyry copper deposit, South Kerman copper belt, Iran. Sci Q J Geosci 25:159–170 (in Persian with English abstract) Google Scholar
  4. Allen MB (2009) Discussion on the Eocene bimodal Piranshahr massif of the Sanadaj Sirjan Zone, West Iran: a marker of the end of collision in the Zagros orogeny. J Geol Soc 166:981–982CrossRefGoogle Scholar
  5. Asadi S, Moore F, Zarasvandi A (2014) Discriminating productive and barren porphyry copper deposits in the southeastern part of the central Iranian volcano-plutonic belt, Kerman region, Iran: a review. Earth Sci Rev 138:25–46CrossRefGoogle Scholar
  6. Audetat A, Pettke T, Dolejs D (2004) Magmatic anhydrite and calcite in the ore forming quartz-monzodiorite magma at Santa Rita, New Mexico (USA): genetic constraints on porphyry-Cu mineralization. Lithos 72:147–161CrossRefGoogle Scholar
  7. Balan E, De Villiers JPR, Eeckhout SG, Glatzel P, Toplis MJ, Fritsch E (2006) The oxidation state of vanadium in titanomagnetite from layered basic intrusions. Am Miner 91:953–956CrossRefGoogle Scholar
  8. Barnes SJ, Roeder PL (2001) The range of spinel composition in terrestrial mafic and ultramafic rocks. J Petrol 42:2279–2302CrossRefGoogle Scholar
  9. Barzegar H (2007) Geology, petrology and geochemical characteristics of alteration zones within the Seridune prospect, Kerman, Iran. Unpublished Ph.D. thesis, Aachen University, GermanyGoogle Scholar
  10. Canil D, Grondah C, Lacourse T, Pisiak LK (2016) Trace elements in magnetite from porphyry Cu–Mo–Au deposits in British Columbia, Canada. Ore Geol Rev 72:1116–1128CrossRefGoogle Scholar
  11. Cao MJ, Li GM, Qin KZ, Jin LY, Evans NJ, Yang XR (2014a) Baogutu: an example of reduced porphyry Cu deposit in western Junggar. Ore Geol Rev 56:159–180CrossRefGoogle Scholar
  12. Cao MJ, Qin KZ, Li GM, Yang YH, Evans NJ, Zhang R, Jin LY (2014b) Magmatic process recorded in plagioclase at the Baogutu reduced porphyry Cu deposit, western Junggar, NW-China. J Asian Earth Sci 82:136–150CrossRefGoogle Scholar
  13. Carew MJ, Mark G, Oliver NHS, Pearson N (2006) Trace element geochemistry of magnetite and pyrite in Fe oxide (± Cu–Au) mineralised systems: insights into the geochemistry of ore-forming fluids. Geochim Cosmochim Acta 70:A83CrossRefGoogle Scholar
  14. Chen JL, Xu JF, Wang BD, Yang ZY, Ren JB, Yu HX, Liu H, Feng Y (2015) Geochemical differences between subduction- and collision-related copperbearing porphyries and implications for metallogenesis. Ore Geol Rev 70:424–437CrossRefGoogle Scholar
  15. Dare SAS, Barnes SJ, Beaudoin G (2012) Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: implications for provenance discrimination. Geochim Cosmochim Acta 88:27–50CrossRefGoogle Scholar
  16. Dare SAS, Barnes SJ, Beaudoin G, Méric J, Boutroy E, Potvin-Doucet C (2014) Trace elements in magnetite as petrogenetic indicators. Miner Deposita 49:785–796CrossRefGoogle Scholar
  17. Dewey JF, Pitman WC, Ryan WB, Bonnin J (1973) Plate tectonics and the evolution of the Alpine system. Geol Soc Am Bull 84:3137–3180CrossRefGoogle Scholar
  18. Dupuis C, Beaudoin G (2011) Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Mineraiuml Deposita 46:319–335CrossRefGoogle Scholar
  19. Einali M, Alirezaei S, Zaccarini F (2014) Chemistry of magmatic and alteration minerals in the Chahfiruzeh porphyry copper deposit, south Iran: implications for the evolution of the magmas and physicochemical conditions of the ore fluids. Turk J Earth Sci 23:147–165CrossRefGoogle Scholar
  20. Ghasemi A, Talbot CJ (2006) A new tectonic scenario for the Sanandaj-Sirjan Zone (Iran). J Asian Earth Sci 26:683–693CrossRefGoogle Scholar
  21. Ghorbani M, Ebrahimi M (2009) Tertiary–Quaternary magmatism in the Dehaj area. Earth Recour J 1:77–89Google Scholar
  22. Grigsby JD (1990) Detrital magnetite as a provenance indicator. J Sediment Res 60:940–951Google Scholar
  23. Grondahl C (2014) Trace elements in magnetite from porphyry deposits: applications in mineral exploration. B.Sc. thesis, University of Victoria, p 83Google Scholar
  24. Habibi T, Hezarkhani A (2013) Hydrothermal evolution of Daraloo porphyry copper deposit, Iran: evidence from fluid inclusions. Arab J Geosci 6:1945–1955CrossRefGoogle Scholar
  25. Hassanzadeh J (1993) Metallogenic and tectonomagmatic events in the SE sector of the Cenozoic active continental margin of central Iran (Shahr e Babak area, Kerman Province). Unpublished Ph.D. dissertation, University of California, Los AngelesGoogle Scholar
  26. Hedenquist JW, Lowenstern JB (1994) The role of magmas in the formation of hydrothermal ore deposits. Nature 370:519–527CrossRefGoogle Scholar
  27. Hezarkhani A (2004) Physico-chemical conditions for an uneconomic porphyry system, Reagan-Bam. Amirkabir J Sci Technol 15:192–203Google Scholar
  28. Hezarkhani A (2006) Mineralogy and fluid inclusion investigations in the Reagan Porphyry System, Iran, the path to an uneconomic porphyry copper deposit. J Asian Earth Sci 27:598–612CrossRefGoogle Scholar
  29. Hezarkhani A (2007) A fluid inclusion investigation on chah firuzeh porphyry copper deposit, based on Drill Core No. 6, Ahar Copper Company, Internal reportGoogle Scholar
  30. Hezarkhani A (2009) Hydrothermal fluid geochemistry at the Chahfiruzeh porphyry copper deposit, Iran: evidence from fluid inclusions. J Geochem Explor 101:254–264CrossRefGoogle Scholar
  31. Hezarkhani A, Williams-Jones AE (1998) Controls of alteration and mineralization in the Sungun Porphyry Copper Deposit, Iran: evidence from fluid inclusions and stable isotopes. Econ Geol 93:651–670CrossRefGoogle Scholar
  32. Hou ZQ, Gao YF, Qu XM, Rui ZY, Mo XX (2004) Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth Planet Sci Lett 220:139–155CrossRefGoogle Scholar
  33. Hou ZQ, Yang ZM, Qu XM, Rui ZY, Meng XJ, Gao YF (2009) The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen. Ore Geol Rev 36:25–51CrossRefGoogle Scholar
  34. Hou ZQ, Zhang HR, Pan XF, Yang ZM (2011) Porphyry Cu (–Mo–Au) deposits related to melting of thickened mafic lower crust: examples from the eastern Tethyan metallogenic domain. Ore Geol Rev 39:21–45CrossRefGoogle Scholar
  35. Hu H, Lentz D, Li JW, McCarron T, Zhao XF, Hall D (2015) Reequilibration processes in magnetite from iron skarn deposits. Econ Geol 110:1–8CrossRefGoogle Scholar
  36. Karimpour MH, Sadeghi M (2018) New hypothesis on parameters controlling the formation and size of porphyry copper deposits: implications on thermal gradient of subducted oceanic slab, depth of dehydration and partial melting along the Kerman copper belt in Iran. Ore Geol Rev. Google Scholar
  37. Kazemi-Mehrnia A (2010) Characteristics of leached capping and evolution of supergene enrichment of Northwest Kerman belt copper molybdenum porphyry deposits. Ph.D. thesis, University of Shahid BeheshtiGoogle Scholar
  38. Keppler H, Wyllie PJ (1991) Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite–H/O–HCl and haplogranite–H2O–HF. Contrib Miner Petrol 109:139–150CrossRefGoogle Scholar
  39. Kerrich R, Goldfarb R, Groves D, Garwin S (2000) The geodynamics of world-class gold deposits: characteristics, space-time distributions, and origins. Rev Econ Geol 13:501–551Google Scholar
  40. Li GM, Li JX, Qin KZ, Zhang TP (2007) High temperature, salinity and strong oxidation ore-forming fluid at Duobuza gold-rich porphyry copper in the Bangonghu tectonic belt, Tibet: evidence from fluid inclusions study. Acta Petrolei Sinica 23:935–952CrossRefGoogle Scholar
  41. Liang HY, Sun W, Su WC, Zartman RE (2009) Porphyry copper–goldmineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration. Econ Geol 104:587–596CrossRefGoogle Scholar
  42. McInnes BIA, Evans NJ, Belousova E, Griffin WL (2003) Porphyry copper deposits of the Kerman belt, Iran: timing of mineralization and exhumation processes. Sci. Res. Rep. Australia. CSIROGoogle Scholar
  43. McInnes BIA, Evans NJ, Fu FQ, Garwin S, Belousova E, Griffin WL, Bertens A et al (2005) Thermal history analysis of selected Chilean, Indonesian, and Iranian porphyry Cu–Mo–Au deposits. Linden Park 16:27–42Google Scholar
  44. Meinert LD, Dipple GM, Nicolescu S (2005) World skarn deposits. Econ Geol 100:299–336Google Scholar
  45. Mohammaddoost H, Ghaderi M, Kumar TV, Hassanzadeh J, Alirezaei S (2017) Zircon U–Pb and molybdenite Re–Os geochronology, with S isotopic composition of sulfides from the Chah-Firouzeh porphyry Cu deposit, Kerman Cenozoic arc, SE Iran. Ore Geol Rev 88:384–399CrossRefGoogle Scholar
  46. Mohammadzadeh Z (2009) Geology, alteration and copper mineralization in Chahfiruzeh area, Share-Babak, Kerman province. M.Sc thesis, University of Shahid BeheshtiGoogle Scholar
  47. Monteiro LVS, Xavier RP, Hitzman MW, Juliani C, de Souza Filho CR, Carvalho ER (2008) Mineral chemistry of ore and hydrothermal alteration at the Sossego iron oxide–copper–gold deposit, Carajás Mineral Province, Brazil. Ore Geol Rev 34:317–336CrossRefGoogle Scholar
  48. Mungall JE (2002) Roasting the mantle: slab melting and the genesis of major Au and Au-rich Cu deposits. Geology 30:915–918CrossRefGoogle Scholar
  49. Mysen BO (2012) High-pressure and high-temperature titaniumsolutionmechanisms in silicate-saturated aqueous fluids and hydrous silicate melts. Am Miner 97:1241–1251CrossRefGoogle Scholar
  50. Nadoll P, Koenig AE (2011) LA-ICP-MS of magnetite: methods and reference materials. J Anal Atom Spectrom Home 26:1872–1877CrossRefGoogle Scholar
  51. Nadoll P, Mauk JL, Hayes TS, Koenig AE, Box SE (2012) Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the Mesoproterozoic Belt Supergroup, United States. Econ Geol 107:1275–1292CrossRefGoogle Scholar
  52. Nadoll P, Angerer T, Mauk JL, French D, Walshe J (2014) The chemistry of hydrothermal magnetite: a review. Ore Geol Rev 61:1–32CrossRefGoogle Scholar
  53. Nadoll P, Mauk JL, Leveille RA, Koenig AE (2015) Geochemistry of magnetite from porphyry Cu and skarn deposits in the southwestern United States. Miner Deposita 50:493–515CrossRefGoogle Scholar
  54. NICICO (2016) Final report of exploration in the porphyry deposits. National Iranian Copper Industries Co, TehranGoogle Scholar
  55. Pisiak L, Canil D, Grondahl C, Plouffe A, Ferbey T, Anderson RG (2014) Magnetite as a porphyry Cu indicator mineral in till: a test using the Mount Polley porphyry Cu–Au deposit. British Columbia. Geoscience 1:141–149Google Scholar
  56. Rezaei M (2017) Effective parameters in mineralization potential of economic and sub-economic porphyry copper deposits in Urumieh–Dokhtar magmatic zone: using geochemical and fluid inclusion studies. Ph.D thesis, Shahid Chamran University (in English) Google Scholar
  57. Richards JP (2003) Tectono-magmatic precursors for porphyry Cu–(Mo–Au) deposit formation. Econ Geol 96:1515–1533CrossRefGoogle Scholar
  58. Richards JP (2013) Giant ore deposits formed by optimal alignments and combinations of geological processes. Nat Geosci 6:911–916CrossRefGoogle Scholar
  59. Richards JP (2015) Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: from subduction to collision. Ore Geol Rev 70:323–345CrossRefGoogle Scholar
  60. Richards JP (2016) Clues to hidden copper deposits. Nat Geosci 9:1–2CrossRefGoogle Scholar
  61. Richards JP, Boyce AJ, Pringle MS (2001) Geologic evolution of the Escondida area, northern Chile: a model for spatial and temporal location of porphyry Cumineralization. Econ Geol 96:271–306CrossRefGoogle Scholar
  62. Richards JP, Spell T, Rameh E, Razique A, Fletcher T (2012) High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu ± Mo ± Au potential: examples from the Tethyan arcs of Central and Eastern Iran and Western Pakistan. Econ Geol 107:295–332CrossRefGoogle Scholar
  63. Rowins SM (2000) Reduced porphyry copper–gold deposits: a new variation on an old theme. Geology 28:491–494CrossRefGoogle Scholar
  64. Rui ZY, Huang CK, Qi GM, Xu J, Zhang MT (1984) The porphyry Cu (–Mo) deposits in China. Geological Publishing House, BeijingGoogle Scholar
  65. Rusk BG, Oliver N, Brown A, Lilly R, Jungmann D (2009) Barren magnetite breccias in the Cloncurry region, Australia; comparisons to IOCG deposits. In: Williams PJ (ed) Proceedings of the 10th biennial SGA meeting of the society for geology applied to mineral deposits. the society for geology applied to mineral deposits, TownsvilleGoogle Scholar
  66. Rusk B, Oliver N, Blenkinsop T, Zhang D (2010) Physical and chemical characteristics of the Ernest Henry Iron Oxide Copper Gold Deposit, Cloncurry, Queensland, Australia; implications for IOCG Genesis. In: Porter T (ed) Hydrothermal iron oxide copper-gold and related deposits: a global perspective. PGC Publishing, AdelaideGoogle Scholar
  67. Shafiei B, Shahabpour J, Haschke M (2008) Transition from Paleogene normal calcalkaline to neogene adakitic-like plutonism and Cu-metallogeny in the Kerman porphyry copper belt: response to neogene crustal thickening. J Sci Islam Repub Iran 19:67–84Google Scholar
  68. Shafiei B, Haschke M, Shahabpour J (2009) Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Miner Deposita 44:265–283CrossRefGoogle Scholar
  69. Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105:3–41CrossRefGoogle Scholar
  70. Simon AC, Candela PA, Piccoli PM, Mengason M, Englander L (2008) The effect of crystal-melt partitioning on the budgets of Cu, Au, and Ag. Am Miner 93:1437–1448CrossRefGoogle Scholar
  71. Singoyi B, Danyushevsky L, Davidson GJ, Large R, Zaw K (2006) Determination of trace elements in magnetites from hydrothermal deposits using the LA-ICP-MS technique. In: Abstracts of oral and poster presentations from the SEG 2006 conference. Society of Economic Geologists, KeystoneGoogle Scholar
  72. Smith CM, Canil D, Rowins SM, Friedman R (2012) Reduced granitic magmas in an arc setting: the Catface porphyry Cu–Mo deposit of the Paleogene Cascade Arc. Lithos 154:361–373CrossRefGoogle Scholar
  73. Sori M (2012) Geochemistry of major, trace and rare earth elements in Chah Firuzeh porphyry, Kerman province. Unpublished M.Sc thesis, Shiraz University, IranGoogle Scholar
  74. Sun WD, Liang HY, Ling MX, Zhan MZ, Ding X, Zhang H et al (2013) The link between reduced porphyry copper deposits and oxidized magmas. Geochim Cosmochim Acta 103:263–275CrossRefGoogle Scholar
  75. Sun W, Huang RF, Li H, Hu YB, Zhang CC, Sun SJ, Zhang LP, Ding X, Li CY, Zartman RE, Ling MX (2015) Porphyry deposits and oxidized magmas. Ore Geol Rev 65:97–131CrossRefGoogle Scholar
  76. Taghinejad A (2012) Petrology, alteration and copper mineralization in Keder area, Shahr-e-babak, Kerman province. M.Sc thesis, Islamic Azad UniversityGoogle Scholar
  77. Taghipour N (2007) The application of fluid inclusions and isotope geochemistry as guides for exploration, alteration and mineralization at the Meiduk porphyry copper deposit, Shahr-Babak, Kerman. Unpublished Ph.D. thesis, Shaheed Bahonar University, Kerman, IranGoogle Scholar
  78. Taghipour N, Aftabi A, Mathur R (2008) Geology and Re–Os geochronology of mineralization of the Miduk porphyry copper deposit. Resour Geol 58:143–160CrossRefGoogle Scholar
  79. Verdel C, Wernicke BP, Hassanzadeh J, Guest B (2011) A Paleogene extensional arc flare-up in Iran. Tectonics 30:1–20CrossRefGoogle Scholar
  80. Wang R, Richards JP, Hou Z, Yang ZM, Gou ZB, DuFrane SA (2014a) Increasing magmatic oxidation state from paleocene to miocene in the Eastern Gangdese Belt, Tibet: implication for collision-related porphyry Cu–Mo ± Au mineralization. Econ Geol 109:1943–1965CrossRefGoogle Scholar
  81. Wang R, Richards JP, Hou ZQ, Yang ZM, DuFrane SA (2014b) Increased magmatic water content—the key to Oligo-Miocene porphyry Cu–Mo ± Au formation in the eastern Gangdese belt, Tibet. Econ Geol 109:1315–1339CrossRefGoogle Scholar
  82. Wen G, Li JW, Hofstra AH, Koenig AE, Lowers HA, Adams D (2017) Hydrothermal reequilibration of igneous magnetite in altered granitic plutons and its implications for magnetite classification schemes: insights from the Handan-Xingtai iron district, North China Craton. Geochemica et Cosmochimica Acta 213:255–270CrossRefGoogle Scholar
  83. Wilkinson JJ (2013) Triggers for the formation of porphyry ore deposits in magmatic arcs. Nat Geosci 6:917–925CrossRefGoogle Scholar
  84. Wilkinson JJ, Chang Z, Cook DR, Baker MJ, Wilkinson CC, Inglis S et al (2015) The chlorite proximitor: a new tool for detecting porphyry ore deposits. J Geochem Explor 152:10–26CrossRefGoogle Scholar
  85. Williamson BJ, Herrington RJ, Morris A (2016) Porphyry copper enrichment linked to excess aluminium in plagioclase. Nat Geosci 9:237–241CrossRefGoogle Scholar
  86. Yang ZM, Hou ZQ, Xu JF, Bian XF, Wang GR, Yang ZS et al (2014) Geology and origin of the post-collisional Narigongma porphyry Cu–Mo deposit, southern Qinghai, Tibet. Gondwana Res 26:536–556CrossRefGoogle Scholar
  87. Zarasvandi A, Liaghat S, Zentilli M (2005) Geology of the Darreh-Zerreshk and Ali-Abad porphyry copper deposits, Central Iran. Int Geol Rev 47:620–646CrossRefGoogle Scholar
  88. Zarasvandi A, Liaghat S, Zentilli M, Reynolds PH (2007) 40Ar/39Ar geochronology of alteration and petrogenesis of porphyry copper-related granitoids in the Darreh–Zerreshk and Ali-Abad area, central Iran. Explor Min Geol 16:11–24CrossRefGoogle Scholar
  89. Zarasvandi A, Shafiei B, Pour Kaseb H, Shahi Moridi S (2011) Effect of supergene process on the distribution of major and trace elements in Dar Alu porphyry copper deposit, Kerman. In: First national copper conference, Kerman, Iran, pp 1–9Google Scholar
  90. Zarasvandi A, Rezaei M, Sadeghi M, Lentz D, Adelpour M, Pourkaseb H (2015) Rare earth element signatures of economic and sub-economic porphyry copper systems in Urumieh–Dokhtar magmatic arc (UDMA), Iran. Ore Geol Rev 70:407–423CrossRefGoogle Scholar
  91. Zarasvandi A, Rezaei M, Raith JG, Poorkaseb H, Asadi S, Saed M et al (2018) Metal endowment reflected in chemical composition of silicates and sulfides of mineralized porphyry copper systems, Urumieh–Dokhtar magmatic arc, Iran. Geochim Cosmochim Acta 223:36–59CrossRefGoogle Scholar
  92. Zarnab Exploration Consulting Company (2009) Geology and alteration of Iju area. Report of 1/1000 Map ExplorationNICICo Publishing Ltd, TehranGoogle Scholar
  93. Zhao L, Chen H, Zhang L, Li D, Zhang W, Wang C (2016) Magnetite geochemistry of the Heijianshan Fe–Cu (–Au) deposit in Eastern Tianshan: metallogenic implications for submarine volcanic-hosted Fe–Cu deposits in NW China. Ore Geol Rev. Google Scholar

Copyright information

© Shiraz University 2019

Authors and Affiliations

  • Alireza Zarasvandi
    • 1
    Email author
  • Majid Heidari
    • 1
  • Mohsen Rezaei
    • 1
  • Johann Raith
    • 2
  • Sina Asadi
    • 3
  • Adel Saki
    • 1
  • Amir Azimzadeh
    • 4
  1. 1.Department of Geology, Faculty of Earth SciencesShahid Chamran University of AhvazAhvazIran
  2. 2.Department of Applied Geosciences and GeophysicsMontanuniversitat LeobenLeobenAustria
  3. 3.Department of Earth Sciences, Faculty of SciencesShiraz UniversityShirazIran
  4. 4.Department of Geology, Faculty of ScienceUniversity of ZanjanZanjanIran

Personalised recommendations