Advertisement

Alpha Particles Behavior in an Elastic Collision with Deformed Nuclei (at 7–8 MeV)

  • Vahid Mirzaei Mahmoud AbadiEmail author
  • Mohammad Bagher Askari
  • Mohammad Hassan Ramezan zadeh
Research paper
  • 11 Downloads
Part of the following topical collections:
  1. Physics

Abstract

In this paper, first, the potential and electric fields of a uniform spheroid charge distribution have been investigated. Then, these potential and electric fields fluctuations have been assigned to the permanently deformed nuclei. The elastic Coulomb scattering has been dynamically studied in a numerical route by solving the two-body motion’s differential equation of target nucleus–alpha particle interaction. The anisotropy of specific deformed parameters relating to the prolate nucleus 176Hf (hafnium) has been investigated. The relevance of the scattered particles’ frequency on two axial and orientational scattering angles Θ and φ has been calculated. Dependence of the impact parameter on both scattering angles Θ and φ was another result of the calculations. In order to observe the anisotropy, a practical implementation method of the deformed nuclei’s scattering has been suggested.

Keywords

Oblate spheroids Prolate spheroids Permanent deformed nuclei Elastic Coulomb scattering Cross section Impact parameter 

Notes

Acknowledgements

Dr. Abbas Hosseini is acknowledged for his kind and valuable advice.

References

  1. Andrade EC (1958) The Rutherford memorial lecture, 1957. The birth of the nuclear atom. Proc R Soc Lond Ser A Math Phys Sci 244(1239):437–455CrossRefGoogle Scholar
  2. Berthier L, Trott M (2016) Consistent constraints on the standard model effective field theory. J High Energy Phys 2016(2):69CrossRefGoogle Scholar
  3. Bohr A, Mottelson BR (1975) Nuclear structure, vol II. Benjamin, New YorkzbMATHGoogle Scholar
  4. Bonatsos D et al (1995) Quantum algebras in nuclear structure. arXiv preprint nucl-th/9512017Google Scholar
  5. Bonatsos D et al (2017) Proxy-SU (3) symmetry in heavy deformed nuclei. Phys Rev C 95(6):064325CrossRefGoogle Scholar
  6. Bulgac A et al (2017) Microscopic theory of nuclear fission. arXiv preprint arXiv:1704.00689
  7. Di Pietro A et al (2010) Elastic scattering and reaction mechanisms of the halo nucleus 11Be around the Coulomb barrier. Phys Rev Lett 105(2):022701CrossRefGoogle Scholar
  8. Gupta RK et al (2005) Theory of the compactness of the hot fusion reaction 48Ca + 244Pu → 292114. Phys Rev C 72(1):014607MathSciNetCrossRefGoogle Scholar
  9. Hagino K, Rowley N (2004) Large-angle scattering and quasielastic barrier distributions. Phys Rev C 69(5):054610CrossRefGoogle Scholar
  10. Hagino K et al (2005) Surface diffuseness anomaly in heavy-ion potentials for large-angle quasielastic scattering. Phys Rev C 71(4):044612CrossRefGoogle Scholar
  11. Iachello F (2001) Analytic description of critical point nuclei in a spherical-axially deformed shape phase transition. Phys Rev Lett 87(5):052502CrossRefGoogle Scholar
  12. Iliadis C (2015) Nuclear physics of stars. Wiley, HobokenGoogle Scholar
  13. Kellogg O (1953) Foundations of potential theory. Dover Publications, New YorkzbMATHGoogle Scholar
  14. Klema E, Osborn RK (1956) Empirical determination of nuclear moments of inertia and intrinsic quadrupole moments. Phys Rev 103(3):833CrossRefGoogle Scholar
  15. Kondev FG, Dracoulis G, Kibedi T (2015) Configurations and hindered decays of K isomers in deformed nuclei with. At Data Nucl Data Tables 103:50–105CrossRefGoogle Scholar
  16. Krane KS, Halliday D (1988) Introductory nuclear physics, vol 465. Wiley, New YorkGoogle Scholar
  17. Liu J et al (2016) Theoretical study on nuclear structure by the multiple Coulomb scattering and magnetic scattering of relativistic electrons. Nucl Phys A 948:46–62CrossRefGoogle Scholar
  18. Liu J et al (2017) Coulomb form factors of odd-A nuclei within an axially deformed relativistic mean-field model. Phys Rev C 96(3):034314CrossRefGoogle Scholar
  19. Mirea M et al (2006) Fine structure of the 0.7 MeV resonance in the 230Th neutron-induced fission cross-section. EPL 73(5):705CrossRefGoogle Scholar
  20. Mirea M, Delion D, Săndulescu A (2010) Microscopic cold fission yields of 252Cf. Phys Rev C 81(4):044317CrossRefGoogle Scholar
  21. Mirzaei V, Miri-Hakimabad H (2012) Ternary fission of 252Cf within the liquid drop model. Rom Rep Phys 64(1):50–63Google Scholar
  22. Papenbrock T, Weidenmüller H (2016) Effective field theory for deformed atomic nuclei. Phys Scr 91(5):053004CrossRefGoogle Scholar
  23. Raychev P, Roussev R, Smirnov YF (1990) The quantum algebra SUq (2) and rotational spectra of deformed nuclei. J Phys G Nucl Part Phys 16(8):L137CrossRefGoogle Scholar
  24. Rowley N (1974) Deformation effects in heavy-ion scattering. Nucl Phys A 219(1):93–103CrossRefGoogle Scholar
  25. Roy B et al (2016) Multi-nucleon transfer reactions with deformed target near Coulomb barrier. In: Proceedings of the DAE-BRNS symposium on nuclear physicsGoogle Scholar
  26. Rubchenya V et al (2004) Fission dynamics in the proton induced fission of heavy nuclei. Nucl Phys A 734:253–256CrossRefGoogle Scholar
  27. Shcherbakov O et al (2002) Neutron-induced fission of 233U, 238U, 232Th, 239Pu, 237Np, natPb and 209Bi relative to 235U in the energy range 1–200 MeV. J Nucl Sci Technol 39(sup2):230–233CrossRefGoogle Scholar
  28. Siemens PJ (2018) Elements of nuclei: many-body physics with the strong interaction. CRC Press, Boca RatonCrossRefGoogle Scholar
  29. Takahara S, Tajima N, Shimizu YR (2012) Nuclear prolate-shape dominance with the Woods–Saxon potential. Phys Rev C 86(6):064323CrossRefGoogle Scholar
  30. Team P-MD, Farhad Rahimi M, Mirzaei V, Khabaz R (2007) Calculation of energy levels according to 3 axial deformed nuclear model (deformation without axial symmetry). Iran J Phys Res 7(3):30Google Scholar
  31. Tolokonnikov S et al (2015) First applications of the Fayans functional to deformed nuclei. J Phys G Nucl Part Phys 42(7):075102CrossRefGoogle Scholar
  32. Wu C-S et al (1957) Experimental test of parity conservation in beta decay. Phys Rev 105(4):1413CrossRefGoogle Scholar
  33. Zagrebaev V (2001) Synthesis of superheavy nuclei: nucleon collectivization as a mechanism for compound nucleus formation. Phys Rev C 64(3):034606CrossRefGoogle Scholar
  34. Zamrun M et al (2008) Coupled-channels analyses for large-angle quasi-elastic scattering in massive systems. Phys Rev C 77(3):034604CrossRefGoogle Scholar

Copyright information

© Shiraz University 2018

Authors and Affiliations

  • Vahid Mirzaei Mahmoud Abadi
    • 1
  • Mohammad Bagher Askari
    • 2
    • 3
  • Mohammad Hassan Ramezan zadeh
    • 2
  1. 1.Faculty of PhysicsShahid Bahonar University of KermanKermanIran
  2. 2.Department of Physics, Faculty of ScienceUniversity of GuilanRashtIran
  3. 3.Department of PhysicsPayame Noor UniversityTehranIran

Personalised recommendations