Shape of Micelles and Temperature and Concentration Behavior of Optical Refractive Properties: Single Amphiphilic and Mixed Bicomponent Amphiphilic Lyotropic Systems

  • Yasemin Altınay
  • Arif Nesrullajev Nesrullazade
Research Paper
  • 24 Downloads

Abstract

Lyotropic systems are bicomponent and/or multicomponent mixtures display physically isotropic and physically anisotropic properties and exhibit various types of isotropic lyotropic phases and anisotropic lyotropic mesophases. Structure units in lyotropic phases and mesophases are the nano-size three-dimensional nanoparticle supramolecular aggregates as the isometric and anisometric micelles. In this work, comparative investigations of the optical refractive properties of lyotropic micellar systems as mixtures of single amphiphile and mixed bicomponent amphiphiles in polar solvent have been carried out. Lauryltrimethyl ammonium bromide (LTAB) + water, cetyltrimethyl ammonium bromide (CTAB) + water, and (LTAB + CTAB mixture) + water lyotropic systems have been studied. Shapes of micelles in single component amphiphilic and bicomponent amphiphilic lyotropic systems have been estimated. Temperature and concentration dependences of the optical refractive index have been determined. Effect of the LTAB/CTAB concentration ratio on the refractive properties of mixtures under investigations has been found. Effect of length of the hydrophobic chain of amphiphile molecules with the same hydrophilic part on the refractive index of lyotropic systems is analysed.

Keywords

Lyotropic systems Micellar phase Hexagonal mesophase Isometric micelle Anisometric micelle Optical refractive properties 

Notes

Acknowledgements

This work has been partially supported by the Research Foundation of Mugla Sitki Kocman University, Grant No. 17/132.

References

  1. Alfutimie A, Curtis R, Tiddy GJD (2014) In: Goodby J, Collings PJ, Kato T, Tschierske C, Gleeson H, Raynes P (eds) Handbook of liquid crystals. Wiley, London, pp 1–44Google Scholar
  2. Amaral LQ, Santos OR, Braga WS, Kimura NM, Palangana AJ (2015) Biaxial phase and coexistence of the two uniaxial nematic phases in the system sodium dodecyl sulphate–decanol–D2O. Liq Cryst 42:240–247.  https://doi.org/10.1080/02678292.2014.981604 CrossRefGoogle Scholar
  3. Burducea G (2004) Lyotropic liquid crystals. I. Specific structures. Rom Rep Phys 56:66–86Google Scholar
  4. Ekwall P (1975) Composition, properties and structures of liquid crystalline phases in systems of amphiphilic compounds. In: Brown GH (ed) Advances in liquid crystals, vol 1. Academic, New York, pp 1–142Google Scholar
  5. Figueiredo Neto AM, Salinas SRA (2005) The physics of lyotropic liquid crystals: phase transitions and structural properties. Oxford University Press, OxfordCrossRefGoogle Scholar
  6. Figuiredo Neto AM (2014) Micellar cholesteric lyotropic liquid crystals. Liq Cryst Res 2:47–59.  https://doi.org/10.1080/21680396.2014.938783 CrossRefGoogle Scholar
  7. Friberg S (1992) Organized solutions: surfactants in science and technology. CRC Press, New YorkGoogle Scholar
  8. Frolov YG (1982) Colloid chemistry: surface effects and disperse systems. Chemistry Publ. Moscow, MoscowGoogle Scholar
  9. Götz KG, Heckmann K (1958) The shape of soap micelles and other polyions as obtained from anisotropy of electrical conductivity. J Colloid Sci 13:266–272.  https://doi.org/10.1016/0095-8522(58)90034-5 CrossRefGoogle Scholar
  10. Govindaiah TN (2016) Optical density and ultrasonic measurements of lyotropic chromonic phase of liquid crystalline materials. Mol Cryst Liq Cryst 637:92–98.  https://doi.org/10.1080/15421406.2016.1149023 CrossRefGoogle Scholar
  11. Guo C, Wang J, Cao F, Lee RJ, Zhai G (2010) Lyotropic liquid crystal systems in drug delivery. Drug Discov Today 15:1032–1040.  https://doi.org/10.1016/j.drudis.2010.09.006 CrossRefGoogle Scholar
  12. Heckmann K, Götz KG (1958) Die Bestimmung der Form gelöster Polyionen aus dem Leitfähigkeitsanisotropie-Effekt. Z für Elektrochem 62:281–288.  https://doi.org/10.1002/bbpc.19580620312 Google Scholar
  13. Hexagonal phase. http://wapedia.mobi/en/Hexagonal_phase. September 2014
  14. Hoffmann H, Oetter G, Schwandner B (1987) The aggregation behavior of tetradecyldimethylaminoxide. Progr Coll Polym Sci 73:95–106.  https://doi.org/10.1007/3-798-50724-4_68 CrossRefGoogle Scholar
  15. Hoffmann H, Hofmann S, Illner JC (1994) Phase behaviour and properties of micellar solutions of mixed zwitterionic and ionic surfactants. Progr Colloid Polym Sci 97:103–109CrossRefGoogle Scholar
  16. Hyde ST (2001) Identification of lyotropic liquid crystalline mesophase. In: Holmberg K (ed) Handbook of applied surface and colloid chemistry. Wiley, London, pp 299–332Google Scholar
  17. Jolley KW, Smith MH, Boden N, Henderson JR (2001) Nature of the liquid crystalline phase transitions in the cesium pentadecafluorooctanoate (CsPFO)-water system: the nematic-to-isotropic transition. Phys Rev E 63:051705–051707.  https://doi.org/10.1103/PhysRevE.63.051705 CrossRefGoogle Scholar
  18. Kazanci N, Nesrullajev A (2003) Refracting and birefringgent properties of lyotropic nematic mesophases. Mater Res Bull 38:1003–1012.  https://doi.org/10.1016/S0025-5408(03)00077-1 CrossRefGoogle Scholar
  19. Kumar A (2013) Determination of orientational order and effective geometry parameter from refractive indices of some nematics. Liq Cryst 40:503–510.  https://doi.org/10.1080/02678292.2012.761355 CrossRefGoogle Scholar
  20. Laughlin RG (1996) The aqueous phase behaviour of surfactants. Academic, LondonGoogle Scholar
  21. Lingmann B, Wennerström H (1980) Amphiphile aggregation in aqueous solutions. In: Micelles. Springer, Berlin, pp 41–57Google Scholar
  22. Mirandi RM, Schulz PC (2002) Vuano B (2002) Triangular phase diagram of the catanionic system dodecyltrimethylammonium bromide–disodium dodecanephosphonate–water. Coll Surf A 197:167–172.  https://doi.org/10.1016/S0927-7757(01)00876-7 CrossRefGoogle Scholar
  23. Mitra M, Gupta S, Paul R, Paul S (1991) Determination of orientational order parameter from optical studies for a homologous series of mesomorphic compounds. Mol Cryst Liq Cryst 199:257–266.  https://doi.org/10.1080/00268949108030937 CrossRefGoogle Scholar
  24. Mukherjee PK (2002) Nematic-isotropic phase transition in lyotropic liquid crystals. Liq Cryst 29:863–869.  https://doi.org/10.1080/02678290210145120 CrossRefGoogle Scholar
  25. Mukherjee PK (2013a) Isotropic micellar to tilted lamellar phase transition in lyotropic liquid crystals. J Mol Liq 187:90–93.  https://doi.org/10.1016/j.molliq.2013.03.05.031 CrossRefGoogle Scholar
  26. Mukherjee PK (2013b) Isotropic micellar to lamellar phase transition in lyotropic liquid crystals. RSC Adv 3:12981–12984CrossRefGoogle Scholar
  27. Mukherjee PK, Bhattacharya J (2007) Phenomenological theory of the nematic to lamellar phase transition in lyotropic liquid crystals. J Chem Phys 126(1–6):024901.  https://doi.org/10.1063/1.2426343 CrossRefGoogle Scholar
  28. Mukherjee PK, Lagerwall JPF, Giesselmann F (2005) Electrolyte effects on the nematic–isotropic phase transition in lyotropic liquid crystal. Liq Cryst 32:1301–1306.  https://doi.org/10.1080/02678290500361963 CrossRefGoogle Scholar
  29. Mukherjee PK, Rahman M (2013) Isotropic to biaxial nematic phase transition in an external magnetic field. Chem Phys 423:178–181.  https://doi.org/10.1016/j.chemphys.2013.07.012 CrossRefGoogle Scholar
  30. Nastishin YA, Liu H, Schneider T, Nazarenko V, Vasyuta R, Shiyanovskii SV, Lavrentovich OD (2005) Optical characterization of the nematic lyotropic chromonic liquid crystals: light absorption, birefringence, and scalar order parameter. Phys Rev E 72(1–14):041711.  https://doi.org/10.1103/physreve.72.041711 CrossRefGoogle Scholar
  31. Nesrullajev A (1988) Anisotropy of electroconductivity and shapes of micellar aggregates: amphiphile + water lyotropic liquid crystalline system. Electrochemistry (Sov.) 24:570–572Google Scholar
  32. Nesrullajev A (1992) Mesomorphism and electrophysics of lyotropic liquid crystalline systems. DSc Dissertation. Institute of Physics, Academy of Sciences, BakuGoogle Scholar
  33. Nesrullajev A (2007) Lyotropic liquid crystals. amphiphilic systems. Mugla University Press, MuglaGoogle Scholar
  34. Nesrullajev A (2010a) Sizes and anisometricity of micelles in lyotropic liquid crystalline mesophases: sodium lauryl sulphate/water/decanol lyotropic system. Tenside Surf Det 47:179–183CrossRefGoogle Scholar
  35. Nesrullajev A (2010b) Shape and sizes of micelles in nematic-calamitic and nematic-discotic mesophases: sodium lauryl sulphate/water/decanol lyotropic system. Mater Chem Phys 123:546–550.  https://doi.org/10.1016/j.matchemphys.2010.05.012 CrossRefGoogle Scholar
  36. Nesrullajev A (2013) Structural peculiarities of micelles in lamellar mesophase of lyotropic liquid crystalline systems: shape, sizes and anisometricity. J Mol Liq 187:337–342.  https://doi.org/10.1016/j.molliq.2013.08.017 CrossRefGoogle Scholar
  37. Nesrullajev A (2014) Comparative I, investigations of phase states, mesomorphic and morphologic properties in hexadecyltrimethyl ammonium bromide/water and hexadecyltrimethyl ammonium bromide/water/1-decanol lyotropic liquid crystalline systems. J Mol Liq 200:425–430.  https://doi.org/10.1016/j.molliq.2014.10.036 CrossRefGoogle Scholar
  38. Nesrullajev A, Kazancı N, Yıldız T (2003) Hexagonal lyotropic liquid crystalline mesophase: change of rod-like micelles sizes with changes in concentrations. Mater Chem Phys 80:710–713.  https://doi.org/10.1016/S0254-0584(03)00079-8 CrossRefGoogle Scholar
  39. Özden P, Nesrullajev A, Oktik S (2010) Phase states and thermomorphologic, thermotropic, and magnetomorphologic properties of lyotropic mesophases: sodium lauryl sulphate-water-1-decanol liquid-crystalline system. Phys Rev E 82(1–7):061701.  https://doi.org/10.1103/physreve.82.061701 CrossRefGoogle Scholar
  40. Pan RP, Tsai TR, Chen CY, Wang CH, Pan CL (2004) The refractive indices of nematic liquid crystal 4′-n-pentyl-4-cyanobiphenyl in the THz frequency range. Mol Cryst Liq Cryst 409:137–144.  https://doi.org/10.1080/15421400490431039 CrossRefGoogle Scholar
  41. Perez-Rodriguez M, Prieto G, Rega C, Varela LM, Sarmiento F, Mosquera V (1998) A comparative study of the determination of the critical micelle concentration by conductivity and dielectric constant measurements. Langmuir 14:4422–4426.  https://doi.org/10.1021/la980296a CrossRefGoogle Scholar
  42. Petrov AG (1999) The lyotropic state of matter: molecular physics and living matter physics. Gordon & Breach Science Publishers, LondonGoogle Scholar
  43. Puvvada S, Blakschtein D (1992) Thermodynamic description of micellization, phase behaviour, and phase separation of aqueous solutions of surfactant mixtures. J Phys Chem 96:5567–5579.  https://doi.org/10.1021/j100192a070 CrossRefGoogle Scholar
  44. Rehage H (1982) Rheologische Untersuchungen an viskoelastischen Tensidlösungen. PhD Dissertation. Bayreuth University, BayreuthGoogle Scholar
  45. Santin Fulho O, Itri R, Amaral LQ (2000) Decanol effect on the structure of the hexagonal phase in a lyotropic liquid crystal. J Phys Chem B 104:959–964.  https://doi.org/10.1021/jp993240d CrossRefGoogle Scholar
  46. Schwarz G (1956) Zur theorie der Leifahigkaeitsanisotropie von Polyelektroliten in Lösung. Z für Phys 145:563–584CrossRefGoogle Scholar
  47. Sonin AS (1987) Lyotropic nematics. Sov Phys Usp 30:875–912.  https://doi.org/10.1070/PU1987v030n10ABEH002967 CrossRefGoogle Scholar
  48. Tsvetkov VN (1986) Hard-chain polymer molecules. Science Publ, MoscowGoogle Scholar
  49. Vedenov AA (1984) The physics of solutions. Science Publ, MoscowMATHGoogle Scholar
  50. Yu LJ, Saupe A (1982) Deuteron resonance of D2O of nematic disodium cromoglycate-water system. Mol Cryst Liq Cryst 80:129–134.  https://doi.org/10.1080/00268948208071026 CrossRefGoogle Scholar

Copyright information

© Shiraz University 2018

Authors and Affiliations

  • Yasemin Altınay
    • 1
  • Arif Nesrullajev Nesrullazade
    • 1
  1. 1.Laboratory of Liquid and Solid Crystals, Department of Physics, Faculty of Natural SciencesMugla Sitki Koçman UniversityMugla KotekliTurkey

Personalised recommendations