Advertisement

Synthesis of Quaternary Cu(InxGa1 − x) Se2 Nanoparticles for Photovoltaic Applications Using Heating-up Method

  • Hassan AbsalanEmail author
  • Hadi Zarei
Research Paper
  • 25 Downloads

Abstract

Nowadays, thin-film solar cells based on nanoparticles have attracted much attention from photovoltaic cell researchers and industries due to their fairly high efficiency and economic costs. In this paper, tetragonal chalcopyrite, Cu(InxGa1 − x)Se2, with x = 0, 0.5, 0.8, 1 is produced by heating-up method. The structure of nanoparticles differ in terms of morphology and absorption properties based on synthesis temperatures 250, 255, 260, 265, 270 and 280 °C and gallium molar ratio over total gallium and indium content. These features are characterized using scanning electron microscope, X-ray diffraction, and absorption spectroscopy in visual, ultra-violate and close-infrared wavelengths. Results indicated that by decreasing x, or in other word increasing gallium content, absorption edge rises toward visible light. Any difference in absorption edge changes band gap and as a result energy gap and cell absorption increase considerably. Furthermore, in heating-up method, increasing reaction temperature improves nanoparticle crystallites and as a result absorption and cells efficiency increase. Produced nanoparticles are spherical in shape which vary around 30–80 nm in size.

Keywords

Nanoparticles Non-vacuum method Heating-up method Characterization 

Notes

Acknowledgments

This work was supported by Ahar Branch, Islamic Azad University, Ahar, Iran.

References

  1. Ahn SJ, Kim KH, Chun YG, Yoon KH (2007) Nucleation and growth of Cu (In, Ga) Se2 nanoparticles in low temperature colloidal process. Thin Solid Films 515:4036–4040CrossRefGoogle Scholar
  2. Castro SL, Bailey SG, Raffaelle RP, Banger KK, Hepp AF (2004) Synthesis and characterization of colloidal CuInS2 nanoparticles from a molecular single-source precursor. J Phys Chem B 108:12429CrossRefGoogle Scholar
  3. Der Wu J, Wang LT, Gau C (2012) Synthesis of CuInGaSe2 nanoparticles by modified polyol route. Sol Energy Mater Sol Cells 98:404–408CrossRefGoogle Scholar
  4. Green MA, Emery K, Hishikawa Y, Warta W (2011) Solar cell efficiency tables (Version 45). Prog Photovolt Res Appl 19:84CrossRefGoogle Scholar
  5. Guo Q, Ford GM, Hillhouse HW, Agrawal R (2009) Sulfide nanocrystal inks for dense Cu (In1 − x Gax)(S1 − y Se y) 2 absorber films and their photovoltaic performance. Nano Lett 9:3060CrossRefGoogle Scholar
  6. Hibberd CJ, Chassaing E, Liu W, Mitzi DB, Lincot D, Tiwari AN (2010) Non-vacuum methods for formation of Cu (In, Ga)(Se, S) 2 thin film photovoltaic absorbers. Prog Photovolt Res Appl 18:434CrossRefGoogle Scholar
  7. Kapur VK, Basol BM, Leidholm CR, Roe R (2000). US Patent, No. 6127202, 3 OctoberGoogle Scholar
  8. Kapur VK, Bansal A, Le P, Asensio OI (2003) Non-vacuum processing of CuIn 1 − x Ga x Se2 solar cells on rigid and flexible substrates using nanoparticle precursor inks. Thin Solid Films 431–432:53–57CrossRefGoogle Scholar
  9. Li L, Coates N, Moses D (2010) Solution-processed inorganic solar cell based on in situ synthesis and film deposition of CuInS2 nanocrystals. J Am Chem Soc 132:22CrossRefGoogle Scholar
  10. Malik MA, O’Brien P, Revaprasadu N (1999) A novel route for the preparation of CuSe and CuInSe2 nanoparticles. Adv Mater 11:1441CrossRefGoogle Scholar
  11. Ming-Yi C, Shu-Hao C, Chia-Yu C, Fang-Wei Y, Hsing-Yu T (2011) Quaternary CuIn (S1− x Se x) 2 nanocrystals: facile heating-up synthesis, band gap tuning, and gram-scale production. Phys Chem C 115:1592–1599CrossRefGoogle Scholar
  12. Nairn JJ, Shapiro PJ, Twamley B, Pounds T, Wandruszka TR, Fletcher TR, Williams W, Norton MG (2006) Preparation of ultrafine chalcopyrite nanoparticles via the photochemical decomposition of molecular single-source precursors. Nano Lett 6:1218CrossRefGoogle Scholar
  13. Panthani MG, Akhavan V, Goodfellow B, Schmidtke Dunn JP, Dodabalapur L, Barbara A, Korgel PF, Am BAJ (2008) Synthesis of CuInS2, CuInSe2, and Cu (In x Ga1 − x) Se2 (CIGS) nanocrystal “inks” for printable photovoltaics. Chem Soc 130:16770CrossRefGoogle Scholar
  14. Qiu JJ, Jin ZG, Wu WB, Xiao L (2006) Characterization of CuInS2 thin films prepared by ion layer gas reaction method. Thin Solid Films 510:1CrossRefGoogle Scholar
  15. Repins I, Contreras MA, Egaas B, DeHart C, Scharf J, Perkins CL, To B, Noufi R (2008) 19·9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor. Prog Photovolt Res Appl 16:235CrossRefGoogle Scholar
  16. SeJin A, Kyunhwan K, Ara C, Jihye G, Jae Ho Y, Keeshik S, SeoungKyu A, Kyunghoon Y (2012) CuInSe2 (CIS) thin films prepared from amorphous Cu–In–Se nanoparticle precursors for solar cell application. ACS Appl Mater Interfaces 4:1530–1536CrossRefGoogle Scholar
  17. Tang J, Hinds S, Kelley OS, Sargent EH (2008) Synthesis of colloidal CuGaSe2, CuInSe2, and Cu (InGa) Se2 nanoparticles. Chem Mater 20:6906–6910CrossRefGoogle Scholar
  18. Xiao JP, Xie Y, Tang R, Qian YT (2001) Synthesis and characterization of ternary CuInS2 nanorods via a hydrothermal route. J Solid State Chem 161:179CrossRefGoogle Scholar
  19. Zhong HZ, Li YC, Ye MF, Zhu Y, Zhou Z, Yang CH, Li YF (2007) A facile route to synthesize chalcopyrite CuInSe2 nanocrystals in non-coordinating solvent. Nanotechnology 18:025602CrossRefGoogle Scholar

Copyright information

© Shiraz University 2017

Authors and Affiliations

  1. 1.Department of Physics, Ahar BranchIslamic Azad UniversityAharIslamic Republic of Iran
  2. 2.Atomic and Molecular Group, Physics Department, Faculty of Basic ScienceTarbiat Modares UniversityTehranIslamic Republic of Iran

Personalised recommendations