Advertisement

Design and Efficient Synthesis of Novel Biological Benzylidenemalononitrile Derivatives Containing Ethylene Ether Spacers

  • Enayatollah SheikhhosseiniEmail author
  • Shahla Soltaninejad
Research Paper
  • 18 Downloads

Abstract

Knoevenagel condensation reaction of ethylene glycol-based aromatic aldehyde with malononitrile leads to the corresponding benzylidenemalononitrile derivatives which contain high yields of ethylene ether spacers. The product structures were derived from their IR, 1H-NMR, and 13C-NMR spectroscopy. Some of these compounds have been found to possess antibacterial activity.

Keywords

Knoevenagel condensation Benzylidenemalononitrile Ethylene ether spacer Antibacterial activity 

Notes

Acknowledgements

The authors express appreciation to the Islamic Azad University (Kerman Branch), for supporting this investigation.

References

  1. Balalaie S, Nemati N (2000) Ammonium acetate-basic alumina catalyzed Knoevenagel condensation under microwave irradiation under solvent-free condition. Synth Commun 30:869–875CrossRefGoogle Scholar
  2. Bessac BF, Sivula M, Von Hehn CA, Cacere I, Escalera J, Jordt S-E (2009) Transient receptor potential ankyrin 1 antagonists block the noxious effects of toxic industrial isocyanates and tear gases. FASEB J 23:1102–1114CrossRefGoogle Scholar
  3. Bigi F, Conforti ML, Maggi R, Piccinno A, Sartori G (2000) Clean synthesis in water: uncatalysed preparation of ylidenemalononitriles. Green Chem 2:101–203CrossRefGoogle Scholar
  4. Brône B, Peeters PJ, Marrannes R, Mercken M, Nuydens R, Meert T, Gijsen HJM (2008) Tear gasses CN, CR, and CS are potent activators of the human TRPA1 receptor. Toxicol Appl Pharmacol 231:150–156CrossRefGoogle Scholar
  5. Campaigne E, Schneller SW (1976) Cylization of ylidenemalononitriles. Synthesis 11:705–716CrossRefGoogle Scholar
  6. Chakrabarty M, Mukherji A, Arima S, Harigaya Y, Pilet G (2009) Expeditious reaction of ninhydrin with active methylene compounds on montmorillonite K10 clay. Monatsh Chem 140(2):189–197CrossRefGoogle Scholar
  7. Corson BB, Stoughton RW (1927) Reactions of alpha, beta-unsaturated dinitriles. J Am Chem Soc 50:2825–2837CrossRefGoogle Scholar
  8. Cruz P, Díez-Barra E, Loupy A, Langa F (1996) Silica gel catalysed Knoevenagel condensation in dry media under microwave irradiation. Tetrahedron Lett 37(12):1113–1116CrossRefGoogle Scholar
  9. Faryabi M, Sheikhhosseini E (2015) Efficient synthesis of novel benzylidenebarbituric and thiobarbituric acid derivatives containing ethyleneglycol spacers. J Iran Chem Soc 12(3):427–432CrossRefGoogle Scholar
  10. Fatiadi AJ (1978) New applications of malononitrile in organic chemistry-part I & II. Synthesis 03:165–204CrossRefGoogle Scholar
  11. Freeman F (1980) Properties and reaction of ylidenemmalononitriles. Chem Rev 80(4):329–350CrossRefGoogle Scholar
  12. Heller G, Wunderlich P (1914) Über N-oxy-dihydro-indole and deren Umwandlungsprodukte. Chem Ber 47:1617–1629CrossRefGoogle Scholar
  13. Jones GRN (1972) CS and its chemical relatives. Nature 235:257–261CrossRefGoogle Scholar
  14. Kim J, Marshal MR, Wie C (1995) Antibacterial activity of some essential oil components against five foodborne pathogens. J Agric Food Chem 43:2839–2845CrossRefGoogle Scholar
  15. Knoevenagel E (1984) Uebereine Darstellungsweise der Glutarsäure. Ber Dtsch Chem Ges 27(2):2345–2346CrossRefGoogle Scholar
  16. Laue T, Plagens A (2005) Named organic chemistry. Wiley, WolfsburgGoogle Scholar
  17. Levitzki A (1992) Tyrphostins, tyrosine kinase blockers as novel antiproliferative agents and dissectors of signal transduction. FASEB J 6:3275–3282CrossRefGoogle Scholar
  18. Levitzki A, Mishani E (2006) Tyrphostins and other tyrosine kinase inhibitors. Annu Rev Biochem 75:93–109CrossRefGoogle Scholar
  19. Lindsay CD, Green C, Bird M, Jones JTA, Riches JR, McKee KK, Sandford MS, Wakefield DA, Timperley CM (2015) Potency of irritation by benzylidenemalononitriles in humans correlates with TRPA1 ion channel activation. R Soc Open Sci 2(1):140160CrossRefGoogle Scholar
  20. Obrador E, Castro M, Tamariz J, Zepeda G, Miranda R, Delgado F (1998) Knoevenagel condensation in heterogeneous phase catalyzed by IR radiation and tonsil actisil FF. Synth Commun 28:4649–4663CrossRefGoogle Scholar
  21. Patil SS, Jadhav SD, Deshmukh MB (2013) Eco-friendly and economic method for Knoevenagel condensation by employing natural catalyst. Indian J Chem B 52B:1172–1175Google Scholar
  22. Rao PS, Venkataratnam RV (1991) Zinc chloride as a new catalyst for Knoevenagel condensation. Tetrahedron Lett 32:5821–5822CrossRefGoogle Scholar
  23. Sagara Y, Ishige K, Tsai C, Maher P (2002) Tyrphostins protect neuronal cells from oxidative stress. J Biol Chem 277:36204–36215CrossRefGoogle Scholar
  24. Sheikhhosseini E (2016) Design and effective synthesis of novel furo[2,3-d]pyrimidine derivatives containing ethylene ether spacers. J Saud Chem Soc.  https://doi.org/10.1016/j.jscs.2016.05.005 Google Scholar
  25. Smith B, March J (2001) March’s advanced organic chemistry. Wiley, New YorkGoogle Scholar
  26. Soltoff SP (2004) Evidence that tyrphostins AG10 and AG18 are mitochondrial uncouplers that alter phosphorylation-dependent cell signaling. J Biol Chem 279:10910–10918CrossRefGoogle Scholar
  27. Wang G-W, Cheng B (2004) Solvent-free and aqueous Knoevenagel condensation of aromatic ketones with malononitrile. Arkivoc ix:4–8Google Scholar

Copyright information

© Shiraz University 2017

Authors and Affiliations

  • Enayatollah Sheikhhosseini
    • 1
    Email author
  • Shahla Soltaninejad
    • 2
  1. 1.Department of Chemistry, Kerman BranchIslamic Azad UniversityKermanIran
  2. 2.Department of Biology, Jiroft BranchIslamic Azad UniversityJiroftIran

Personalised recommendations