Congruences modulo powers of 11 for some eta-quotients

  • Shashika Petta MestrigeEmail author


The partition function \( p_{[1^c11^d]}(n)\) can be defined using the generating function,
$$\begin{aligned} \sum _{n=0}^{\infty }p_{[1^c{11}^d]}(n)q^n=\prod _{n=1}^{\infty }\dfrac{1}{(1-q^n)^c(1-q^{11 n})^d}. \end{aligned}$$
In this paper, we prove infinite families of congruences for the partition function \( p_{[1^c11^d]}(n)\) modulo powers of 11 for any integers c and d, which generalizes Atkin and Gordon’s congruences for powers of the partition function. The proofs use an explicit basis for the vector space of modular functions of the congruence subgroup \(\Gamma _0(11)\).

Mathematics Subject Classification

Primary 11P83 Secondary 05A17 



  1. 1.
    Atkin, A.O.L.: Proof of a conjecture of Ramanujan. Glasgow Math. J. 8, 14–32 (1967)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Atkin, A.O.L.: Ramanujan congruences for \(p_{-k}(n)\). Can. J. Math. 20, 67–78 (1968). corrigendum, ibid. 21 1968 256CrossRefGoogle Scholar
  3. 3.
    Atkin, A.O.L., Lehner, J.: Hecke operators on \(\Gamma _0(m)\). Math. Ann. 185, 134–160 (1970)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chan, H.-C.: Ramanujan’s cubic continued fraction and an analog of his “most beautiful identity”. Int. J. Number Theory 6(3), 673–680 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chan, H.-C.: Ramanujan’s cubic continued fraction and Ramanujan type congruences for a certain partition function. Int. J. Number Theory 6(4), 819–834 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chan, H.H., Toh, P.C.: New analogues of Ramanujan’s partition identities. J. Number Theory 130(9), 1898–1913 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chen, S.-C.: Congruences for t-core partition functions. J. Number Theory 133(12), 4036–4046 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gordon, B.: Ramanujan congruences for \(p_{-k}~(mod \; 11^r)\). Glasgow Math. J. 24(2), 107–123 (1983)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Newman, M.: Construction and application of a class of modular functions. Proc. Lond. Math. Soc. 7, 334–350 (1957)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ramanujan, S.: Some properties of p(n), the number of partitions of n [Proc. Cambridge Philos. Soc. 19 (1919), 207–210]. Collected papers of Srinivasa Ramanujan, 210–213, AMS Chelsea Publ., Providence, RI, (2000)Google Scholar
  11. 11.
    Ramanujan, S.: Congruence properties of partitions. Math. Z. 9(1–2), 147–153 (1921)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ramanujan, S.: Congruence properties of partitions [Proc. London Math. Soc. (2) 18 (1920), Records for 13 March 1919]Google Scholar
  13. 13.
    Wang, L.: Congruences for 5-regular partitions modulo powers of 5. Ramanujan J. 44(2), 343–358 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Wang, L.: Congruences modulo powers of 11 for some partition functions. Proc. Am. Math. Soc. 146(4), 1515–1528 (2018)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Wang, L.: Arithmetic properties of 7-regular partitions. Ramanujan J. 47(1), 99–115 (2018)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Watson, G.N.: Ramanujans Vermutung über Zerfallun gsanzahlen. J. Reine u. Angew. Math. 179, 97–128 (1938)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Mathematics DepartmentLouisiana State UniversityBaton RougeUSA

Personalised recommendations