Advertisement

Short proof of Rademacher’s formula for partitions

  • Wladimir de Azevedo Pribitkin
  • Brandon WilliamsEmail author
Research
  • 82 Downloads

Abstract

This note rederives a formula for r-color partitions, \(1\le r \le 24\), including Rademacher’s celebrated result for ordinary partitions, from the duality between modular forms of weights \({-r}/{2}\) and \({2+r}/{2}\).

Mathematics Subject Classification

11F20 11P82 

Notes

References

  1. 1.
    Ahlgren, S., Andersen, N.: Weak harmonic Maass forms of weight 5/2 and a mock modular form for the partition function. Res. Number Theory 1, Art. 10, 16 (2015).  https://doi.org/10.1007/s40993-015-0011-9
  2. 2.
    Atiyah, M.: The logarithm of the Dedekind \(\eta \)-function. Math. Ann. 278(1–4), 335–380 (1987).  https://doi.org/10.1007/BF01458075 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Borcherds, R.E.: The Gross-Kohnen-Zagier theorem in higher dimensions. Duke Math. J. 97(2), 219–233 (1999).  https://doi.org/10.1215/S0012-7094-99-09710-7 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bringmann, K., Folsom, A., Ono, K., Rolen, L.: Harmonic Maass Forms and Mock Modular Forms: Theory and Applications. American Mathematical Society Colloquium Publications, vol. 64. American Mathematical Society, Providence, RI (2017)Google Scholar
  5. 5.
    Bruinier, J.H., Ono, K.: Algebraic formulas for the coefficients of half-integral weight harmonic weak Maass forms. Adv. Math. 246, 198–219 (2013).  https://doi.org/10.1016/j.aim.2013.05.028 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Hardy, G.H., Ramanujan, S.: Asymptotic formulæ in combinatory analysis. Proc. Lond. Math. Soc. 2(17), 75–115 (1918).  https://doi.org/10.1112/plms/s2-17.1.75 CrossRefzbMATHGoogle Scholar
  7. 7.
    Hart, W., Johansson, F., Pancratz, S.: Flint 2.5.2: Fast Library for Number Theory (2015). http://www.flintlib.org/flint-2.5.pdf
  8. 8.
    Hejhal, D,A.: The Selberg Trace Formula for PSL(2, \(\mathbb{R}\)), Vol. 2. Lecture Notes in Mathematics, vol. 1001. Springer, Berlin (1983).  https://doi.org/10.1007/BFb0061302
  9. 9.
    Knopp, M.I.: Modular Functions in Analytic Number Theory, 2nd edn. AMS Chelsea Publishing, vol. 337. American Mathematical Society, Providence, RI (1993)Google Scholar
  10. 10.
    Niebur, D.: A class of nonanalytic automorphic functions. Nagoya Math. J. 52, 133–145 (1973). http://projecteuclid.org/euclid.nmj/1118794882
  11. 11.
    Petersson, H.: Über die Entwicklungskoeffizienten der automorphen Formen. Acta Math. 58(1), 169–215 (1932).  https://doi.org/10.1007/BF02547776 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Poincaré, H.: Fonctions modulaires et fonctions fuchsiennes. Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. (3) 3, 125–149 (1912). http://www.numdam.org/item/AFST_1911_3_3__125_0
  13. 13.
    Pribitkin, W.: Revisiting Rademacher’s formula for the partition function \(p(n)\). Ramanujan J. 4(4), 455–467 (2000).  https://doi.org/10.1023/A:1009828302300 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Pribitkin, W.: Laplace’s integral, the gamma function, and beyond. Amer. Math. Monthly 109(3), 235–245 (2002).  https://doi.org/10.2307/2695353 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Pribitkin, W.: A generalization of Knopp’s Observation on Ramanujan’s tau-function. Ramanujan J. 41(1–3), 519–542 (2016).  https://doi.org/10.1007/s11139-015-9756-y
  16. 16.
    Rademacher, H.: On the partition function \(p(n)\). Proc. Lond. Math. Soc. (2) 43(4), 241–254 (1937).  https://doi.org/10.1112/plms/s2-43.4.241
  17. 17.
    Rademacher, H.: On the expansion of the partition function in a series. Ann. Math. (2) 44(3), 416–422 (1943).  https://doi.org/10.2307/1968973
  18. 18.
    Rademacher, H.: Lectures on Analytic Number Theory. Tata Institute of Fundamental Research, Bombay (1954–1955). http://www.math.tifr.res.in/~publ/ln/tifr02.pdf. Notes by K. Balagangadharan and V. Venugopal Rao
  19. 19.
    Selberg, A.: Reflections around the Ramanujan centenary. In: Collected Papers, Vol. I, pp. 695–706. Springer, Berlin (1989)Google Scholar
  20. 20.
    Siegel, C.L.: Berechnung von Zetafunktionen an ganzzahligen Stellen. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 10, 87–102 (1969)Google Scholar
  21. 21.
    Zagier, D.: Traces of singular moduli. In: Motives, Polylogarithms and Hodge Theory, Part I (Irvine, CA, 1998). Int. Press Lect. Ser., vol. 3, pp. 211–244. International Press, Somerville, MA (2002)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsCollege of Staten Island, CUNYStaten IslandUSA
  2. 2.Department of MathematicsThe Graduate Center, CUNYNew YorkUSA
  3. 3.Department of MathematicsUniversity of CaliforniaBerkeleyUSA
  4. 4.Fachbereich MathematikTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations