Formulas for Chebotarev densities of Galois extensions of number fields

  • Naomi Sweeting
  • Katharine WooEmail author


We generalize the Chebotarev density formulas of Dawsey (Res Number Theory 3:27, 2017) and Alladi (J Number Theory 9:436–451, 1977) to the setting of arbitrary finite Galois extensions of number fields L / K. In particular, if \(C \subset G = {{\mathrm{Gal}}}(L/K)\) is a conjugacy class, then we establish that the Chebotarev density is the following limit of partial sums of ideals of K:
$$\begin{aligned} -\lim _{X\rightarrow \infty } \sum _{\begin{array}{c} 2\le N(I)\le X \\ I \in S(L/K; C) \end{array}} \frac{\mu _K(I)}{N(I)} = \frac{|C|}{|G|}, \end{aligned}$$
where \(\mu _K(I)\) denotes the generalized Möbius function and S(L / KC) is the set of ideals \(I\subset \mathcal {O}_K\) such that I has a unique prime divisor \(\mathfrak {p}\) of minimal norm and the Artin symbol \(\left[ \frac{L/K}{\mathfrak {p}}\right] \) is C. To obtain this formula, we generalize several results from classical analytic number theory, as well as Alladi’s concept of duality for minimal and maximal prime divisors, to the setting of ideals in number fields.


Author's contributions


The authors would like to thank Professor Ken Ono and Professor Larry Rolen for their guidance and suggestions. They also thank Emory University, the Asa Griggs Candler Fund, and NSF grant DMS-1557960.


  1. 1.
    Alladi, K.: Duality between prime factors and an application to the prime number theorem for arithmetic progressions. J. Number Theory 9, 436–451 (1977)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Dawsey, M.: A new formula for chebotarev densities. Res.n Number Theory 3, 27 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Lagarias, J.C., Odlyzko, A.: Effective versions of the chebotarev density theorem. Proceeding of the Symposium University. Durham, pp 409–464 (1975)Google Scholar
  4. 4.
    Landau, E.: Ueber die zahlentheoretische funktion \(\mu (n)\) und ihre beziehung zum goldbachschen satz. Nachr. Ges. Wiss. Gött. Math.-Phys. Kl. 1900, 177–186 (1900)Google Scholar
  5. 5.
    Landau, E.: Neuer beweis des primzahlsatzes und beweis des primidealsatzes. Math. Ann. 56, 645–670 (1903)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Moree, P.: An interval result for the number field \(\psi (x, y)\) function. Manuscr. Math. 76, 437–450 (1992)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Murty, M.R., Order, J.V.: Counting integral ideals in a number field. Expos. Math. 25(1), 53–66 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Shapiro, H.N.: An elementary proof of the prime ideal theorem. Commun. Pure Appl. Math. 2(4), 309–323 (1949)MathSciNetCrossRefGoogle Scholar

Copyright information

© SpringerNature 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ChicagoChicagoUSA
  2. 2.Department of MathematicsStanford UniversityStanfordUSA

Personalised recommendations