Research in Number Theory

, 4:36 | Cite as

Formulas for non-holomorphic Eisenstein series and for the Riemann zeta function at odd integers

  • Cormac O’SullivanEmail author


New expressions are given for the Fourier expansions of non-holomorphic Eisenstein series with weight k. Among other applications, this leads to non-holomorphic analogs of formulas of Ramanujan, Grosswald and Berndt containing Eichler integrals of holomorphic Eisenstein series.

Mathematics Subject Classification

11F30 11F37 11M06 



Support for this project was provided by a PSC-CUNY Award, jointly funded by The Professional Staff Congress and The City University of New York.


  1. 1.
    Andersen, N., Duke, W.: Modular invariants for real quadratic fields and Kloosterman sums. arXiv:1801.08174
  2. 2.
    Andersen, N., Lagarias, J.C., Rhoades, R.C.: Shifted polyharmonic Maass forms for \({{\rm PSL}}(2,\mathbb{Z})\). arXiv:1708.01278
  3. 3.
    Berndt, B.C.: Modular transformations and generalizations of several formulae of Ramanujan. Rocky Mt. J. Math. 7(1), 147–189 (1977)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Berndt, B.C.: Ramanujan’s Notebooks. Part II. Springer, New York (1989)CrossRefGoogle Scholar
  5. 5.
    Berndt, B.C., Straub, A.: Ramanujan’s formula for \(\zeta (2n+1)\). In: Exploring the Riemann Zeta Function, pp. 13–34. Springer, Cham (2017)CrossRefGoogle Scholar
  6. 6.
    Bringmann, K., Kudla, S.: A classification of harmonic Maass forms. Math. Ann. 370(3–4), 1729–1758 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bringmann, K., Folsom, A., Ono, K., Rolen, L.: Harmonic Maass Forms and Mock Modular Forms: Theory and Applications. American Mathematical Society Colloquium Publications, vol. 64. American Mathematical Society, Providence, RI (2017)CrossRefGoogle Scholar
  8. 8.
    Brown, F.: A class of non-holomorphic modular forms I. Res. Math. Sci. 5(1), 7 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Brown, F.: A class of non-holomorphic modular forms III: real analytic cusp forms for \({\rm SL}_2(\mathbb{Z})\). Res. Math. Sci. 5(3), 5:34 (2018)CrossRefGoogle Scholar
  10. 10.
    Bump, D.: Automorphic Forms and Representations. Cambridge Studies in Advanced Mathematics, vol. 55. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  11. 11.
    Chinta, G., Jorgenson, J., Karlsson, A.: Zeta functions, heat kernels, and spectral asymptotics on degenerating families of discrete tori. Nagoya Math. J. 198, 121–172 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Cohen, H., Strömberg, F.: Modular Forms, A Classical Approach. Graduate Studies in Mathematics, vol. 179. American Mathematical Society, Providence, RI (2017)CrossRefGoogle Scholar
  13. 13.
    de Azevedo Pribitkin, W.: Eisenstein series and Eichler integrals. In: Analysis, geometry, number theory: the mathematics of Leon Ehrenpreis (Philadelphia, PA, 1998), Contemp. Math., vol. 251, pp. 463–467. American Mathematical Society, Providence, RI, (2000)Google Scholar
  14. 14.
    D’Hoker, E., Duke, W.: Fourier series of modular graph functions. J. Number Theory 192, 1–36 (2018)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Duke, W., Friedlander, J.B., Iwaniec, H.: The subconvexity problem for Artin \(L\)-functions. Invent. Math. 149(3), 489–577 (2002)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Duke, W., Imamoḡlu, Ö., Tóth, Á.: Imamoḡlu, Ö., Tóth, Á.: Kronecker’s first limit formula, revisited. Res. Math. Sci. 5(2), 20 (2018)CrossRefGoogle Scholar
  17. 17.
    Diamantis, N., O’Sullivan, C.: Kernels of \(L\)-functions of cusp forms. Math. Ann. 346(4), 897–929 (2010)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Diamantis, N., O’Sullivan, C.: Kernels for products of \(L\)-functions. Algebra Number Theory 7(8), 1883–1917 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Gun, S., Murty, M.R., Rath, P.: Transcendental values of certain Eichler integrals. Bull. Lond. Math. Soc. 43(5), 939–952 (2011)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Grosswald, E.: Die Werte der Riemannschen Zetafunktion an ungeraden Argumentstellen. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1970, 9–13 (1970)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Grosswald, E.: Comments on some formulae of Ramanujan. Acta Arith. 21, 25–34 (1972)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Grosswald, E.: Rational valued series of exponentials and divisor functions. Pac. J. Math. 60(1), 111–114 (1975)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Iwaniec, H.: Spectral Methods of Automorphic Forms. Graduate Studies in Mathematics, vol. 53, 2nd edn. American Mathematical Society, Providence, RI (2002)Google Scholar
  24. 24.
    Jakobson, D.: Quantum unique ergodicity for Eisenstein series on \({\rm PSL}_2({\bf Z})\backslash {\rm PSL}_2({\bf R})\). Ann. Inst. Fourier (Grenoble) 44(5), 1477–1504 (1994)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Katsurada, M., Noda, T.: Differential actions on the asymptotic expansions of non-holomorphic Eisenstein series. Int. J. Number Theory 5(6), 1061–1088 (2009)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Khuri-Makdisi, K., Raji, W.: Periods of modular forms and identities between Eisenstein series. Math. Ann. 367(1–2), 165–183 (2017)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Kohnen, W., Zagier, D.: Modular forms with rational periods. In: Modular forms (Durham, 1983), Ellis Horwood Ser. Math. Appl.: Statist. Oper. Res., pp. 197–249. Horwood, Chichester (1984)Google Scholar
  28. 28.
    Lagarias, J.C., Rhoades, R.C.: Polyharmonic Maass forms for \(\text{ PSL }(2,\mathbb{Z})\). Ramanujan J. 41(1–3), 191–232 (2016)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Maass, H.: Lectures on Modular Functions of One Complex Variable. Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 29, 2nd edn. Tata Institute of Fundamental Research, Bombay (1983). (With notes by Sunder Lal)CrossRefGoogle Scholar
  30. 30.
    Miyake, T.: Modular Forms. Springer Monographs in Mathematics, English edn. Springer, Berlin (2006). (Translated from the 1976 Japanese original by Yoshitaka Maeda)Google Scholar
  31. 31.
    Murty, M.R., Smyth, C., Wang, R.J.: Zeros of Ramanujan polynomials. J. Ramanujan Math. Soc. 26(1), 107–125 (2011)MathSciNetzbMATHGoogle Scholar
  32. 32.
    NIST Digital Library of Mathematical Functions., Release 1.0.17 of 2017-12-22. Olver, F.W.J., Olde Daalhuis, A.B., Lozier, D.W., Schneider, B.I., Boisvert, R.F., Clark, C.W., Miller, B.R., Saunders, B.V. (eds)
  33. 33.
    Ono, K.: Unearthing the visions of a master: harmonic Maass forms and number theory. In: Current Developments in Mathematics, 2008, pp. 347–454. Int. Press, Somerville, MA (2009)Google Scholar
  34. 34.
    O’Sullivan, C.: Identities from the holomorphic projection of modular forms. In: Number Theory for the millennium, III (Urbana, IL, 2000), pp. 87–106. DA K Peters, Natick, MA (2002)Google Scholar
  35. 35.
    O’Sullivan, C.: Zeros of the dilogarithm. Math. Comput. 85(302), 2967–2993 (2016)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Terras, A.: Some formulas for the Riemann zeta function at odd integer argument resulting from Fourier expansions of the Epstein zeta function. Acta Arith. 29(2), 181–189 (1976)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1996). (Reprint of the fourth (1927) edition)CrossRefGoogle Scholar
  38. 38.
    Zagier, D.: Modular Forms Whose Fourier Coefficients Involve Zeta-Functions of Quadratic Fields. Lecture Notes in Math., vol. 627, pp. 105–169 (1977)Google Scholar
  39. 39.
    Zagier, D.: Periods of modular forms and Jacobi theta functions. Invent. Math. 104(3), 449–465 (1991)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Zagier, D.: Elliptic modular forms and their applications. In: The 1-2-3 of Modular Forms, Universitext, pp. 1–103. Springer, Berlin (2008)zbMATHGoogle Scholar

Copyright information

© SpringerNature 2018

Authors and Affiliations

  1. 1.Dept. of MathThe CUNY Graduate CenterNew YorkUSA

Personalised recommendations