Research in Number Theory

, 4:35 | Cite as

A finite field analogue of the Appell series \(F_4\)

  • Mohit Tripathi
  • Rupam BarmanEmail author


We define a function \(F_4^{*}\) as a finite field analogue of the classical Appell series \(F_4\) using Gauss sums. We establish identities for \(F_4^{*}\) analogous to those satisfied by the classical Appell series \(F_4\).


Hypergeometric series Appell series Gauss and Jacobi sums Hypergeometric series over finite fields 

Mathematics Subject Classification

33C65 11T24 


  1. 1.
    Bailey, W.: Generalized Hypergeometric Series. Cambridge University Press, Cambridge (1935)zbMATHGoogle Scholar
  2. 2.
    Bailey, W.: Some infinite integrals involving Bessel functions. Proc. Lond. Math. Soc. s2–40, 37–48 (1936)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Barman, R., Saikia, N., Tripathi, M.: Appell’s hypergeometric series over finite fields (submitted)Google Scholar
  4. 4.
    Berndt, B., Evans, R., Williams, K.: Gauss and Jacobi Sums. Canadian Mathematical Society Series of Monographs and Advanced Texts. Wiley, New York (1998)Google Scholar
  5. 5.
    Burchnall, J.L., Chaundy, T.W.: Expansions of Appell’s double hypergeometric functions. Q. J. Math. 11, 249–270 (1940)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Frechette, S., Swisher, H., Tu, F.-T.: A cubic transformation formula for Appell-Lauricella hypergeometric functions over finite fields. Res. Number Theory 4, 27 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fuselier, J., Long, L., Ramakrishna, R., Swisher, H., Tu, F.: Hypergeometric functions over finite fields. arXiv:1510.02575v2 (2016)
  8. 8.
    Greene, J.: Hypergeometric functions over finite fields. Trans. Am. Math. Soc. 301(1), 77–101 (1987)MathSciNetCrossRefGoogle Scholar
  9. 9.
    He, B.: A Lauricella hypergeometric series over finite fields. arXiv:1610.04473v3 (2017)
  10. 10.
    He, B.: A finite field analogue for Appell series \(F_3\). arXiv:1704.03509v1 (2017)
  11. 11.
    He, B., Li, L., Zhang, R.: An Appell series over finite fields. Finite Fields Appl. 48(11), 289–305 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Katz, N.: Exponential Sums and Differential Equations. Annals of Mathematics Studies, vol. 124. Princeton University Press, Princeton (1990)CrossRefGoogle Scholar
  13. 13.
    Li, L., Li, X., Mao, R.: Appell series \(F_1\) over finite fields. Int. J. Number Theory 14(3), 727–738 (2018)MathSciNetCrossRefGoogle Scholar
  14. 14.
    McCarthy, D.: Transformations of well-poised hypergeometric functions over finite fields. Finite Fields Appl. 18(6), 1133–1147 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Rainville, E.D.: Special Functions. MacMillan, New York (1960)zbMATHGoogle Scholar

Copyright information

© SpringerNature 2018

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations