Research in Number Theory

, 4:33 | Cite as

Brauer–Manin obstructions on degree 2 K3 surfaces

  • Patrick Corn
  • Masahiro NakaharaEmail author


We analyze the Brauer–Manin obstruction to rational points on the K3 surfaces over \({{\mathbb {Q}}}\) given by double covers of \({{\mathbb {P}}^{2}}\) ramified over a diagonal sextic. After finding an explicit set of generators for the geometric Picard group of such a surface, we find two types of infinite families of counterexamples to the Hasse principle explained by the algebraic Brauer–Manin obstruction. The first type of obstruction comes from a quaternion algebra, and the second type comes from a 3-torsion element of the Brauer group, which gives an affirmative answer to a question asked by Ieronymou and Skorobogatov.


Rational points Hasse principle Brauer–Manin obstruction 

Mathematics Subject Classification

14G05 11G35 14F22 


  1. 1.
    Argentin, P.: Sur certaines surfaces de Kummer. PhD thesis, Université de Genève (2006)Google Scholar
  2. 2.
    Balestrieri, F., Berg, F., Manes, M., Park, J., Viray, B.: Insufficiency of the Brauer–Manin obstruction for rational points on Enriques surfaces. In: Eischen, E.E., Long, L., Pries, R., Stange, K.E. (eds.), Directions in Number Theory: Proceedings of the 2014 WIN3 Workshop, pp. 1–31. Springer International Publishing (2016)Google Scholar
  3. 3.
    Barth, W.P., Hulek, K., Peters, C.A.M., Van de Ven, A.: Compact Complex Surfaces, 2 edn. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 4. Springer, Berlin (2004)CrossRefGoogle Scholar
  4. 4.
    Bosma, W., Cannon, J., Playoustm, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24(3-4), 235–265 (1997). Computational algebra and number theory (London, 1993)Google Scholar
  5. 5.
    Bright, M.: Computations on diagonal quartic surfaces. PhD thesis, Cambridge University (2002)Google Scholar
  6. 6.
    Colliot-Thélène, J.-L.: Points rationnels sur les fibrations. In Böröczky, K., Kollár, J., Szamuely, T. (eds.), Higher dimensional varieties and rational points: proceedings of the 2001 Budapest conference. Springer, Berlin (2003)Google Scholar
  7. 7.
    Colliot-Thélène, J.-L., Kanevsky, D., Sansuc, J.-J.: Arithmétique des surfaces cubiques diagonales. In: Diophantine Approximation and Transcendence Theory: Seminar, Bonn 1985. Lecture notes in mathematics, vol. 1290, pp. 1–108. Springer, Berlin (1987)Google Scholar
  8. 8.
    Colliot-Thélène, J.-L., Pál, A., Skorobogatov, A.N.: Pathologies of the Brauer–Manin obstruction. Math. Z. 282(3), 799–817 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Corn, P.: Del Pezzo surfaces and the Brauer-Manin obstruction. PhD thesis, University of California, Berkeley (2005)Google Scholar
  10. 10.
    Corn, P.: The Brauer–Manin obstruction on Del Pezzo surfaces of degree 2. Proc. London Math. Soc. 95(3), 735–777 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Corn, P.: Tate-Shafarevich groups and K3 surfaces. Math. Comput. 79, 563–581 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Festi, D.: Topics in the arithmetic of del Pezzo and K3 surfaces. PhD thesis, Leiden University (2016)Google Scholar
  13. 13.
    Hassett, B., Várilly-Alavarado, A.: Failure of the Hasse principle on general K3 surfaces. J. l’Inst. Math. Jussieu 12, 853–877 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hassett, B., Várilly-Alvarado, A., Varilly, P.: Transcendental obstructions to weak approximation on general K3 surfaces. Adv. Math. 228(3), 1377–1404 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Huybrechts, D.: Lectures on K3 Surfaces. Cambridge University press, New York (2016)Google Scholar
  16. 16.
    Ieronymou, E., Skorobogatov, A.: Odd order Brauer–Manin obstruction on diagonal quartic surfaces. Adv. Math 270, 181–205 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ieronymou, E., Skorobogatov, A.N., Zarhin, Y.G.: On the Brauer group of diagonal quartic surfaces. J. Lond. Math. Soc. 83(2), 659–672 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Logan, A.: The Brauer-Manin obstruction on del Pezzo surfaces of degree 2 branched along a plane section of a Kummer surface. Math. Proc. Camb. Phil. Soc. 144(3), 603–622 (2008)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Logan, A., van Luijk, R.: Nontrivial elements of Sha explained through K3 surfaces. Math. Comput. 78, 441–483 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    McKinnie, K., Sawon, J., Tanimoto, S., Várilly-Alvarado, T.: Brauer Groups on K3 Surfaces and Arithmetic Applications, vol. 320, pp. 177–218. Springer, Cham (2017)Google Scholar
  21. 21.
    Nikulin, V.V.: Integral symmetric bilinear forms and some of their applications. Math. USSR-Izvestiya 14(1), 103 (1980)CrossRefGoogle Scholar
  22. 22.
    Poonen, B.: Insufficiency of the Brauer-Manin obstruction applied to étale covers. Ann. Math. 171(3), 2157–2169 (2010)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Serre, J.-P.: Linear Representations of Finite Groups. Springer, Berlin (1977)Google Scholar
  24. 24.
    Serre, J.-P.: Local Fields. Springer, New York (1979). Translated from the French by Marvin Jay GreenbergCrossRefGoogle Scholar
  25. 25.
    Skorobogatov, A.: Beyond the Manin obstruction. Invent. Math. 135(2), 399–424 (1999)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Skorobogatov, A.: Torsors and Rational Points. Cambridge Tracts in Mathematics, vol. 144. Cambridge University Press, Cambridge (2001)Google Scholar
  27. 27.
    Skorobogatov, A.: Diagonal quartic surfaces. Oberwolfach Rep. 33, 76–79 (2017)Google Scholar
  28. 28.
    Skorobogatov, A.N., Zarhin, Y.G.: Kummer varieties and their Brauer groups. arXiv:1612.05993 (2016)
  29. 29.
    Smeets, A.: Insufficiency of the étale Brauer–Manin obstruction: towards a simply connected example. Am. J. Math. 139(2), 417–431 (2017)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Várilly-Alvarado, A.: Weak approximation on del Pezzo surfaces of degree 1. Adv. Math. 219(6), 2123–2145 (2008)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Várilly-Alvarado, A.: Arithmetic of K3 surfaces. In: Bogomolov, F., Hassett, B., Tschinkel, Y. (eds.), Geometry Over Nonclosed Fields, vol. 5, pp. 197–248. Springer, Berlin (2017)CrossRefGoogle Scholar
  32. 32.
    Yuri, I.: Manin. Le groupe de Brauer-Grothendieck en géométrie diophantienne. Actes due Congrés International des Mathématiciens (Nice. 1970), Tome 1, pp. 401–411. Gauthier-Villars, Paris (1971)Google Scholar

Copyright information

© SpringerNature 2018

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceEmory UniversityAtlantaUSA
  2. 2.School of MathematicsUniversity of ManchesterManchesterUK

Personalised recommendations