Research in Number Theory

, 4:32 | Cite as

Records on the vanishing of Fourier coefficients of powers of the Dedekind eta function

  • Bernhard HeimEmail author
  • Markus Neuhauser
  • Alexander Weisse


In this paper we significantly extend Serre’s table on the vanishing properties of Fourier coefficients of odd powers of the Dedekind eta function. We address several conjectures of Cohen and Strömberg and give a partial answer to a question of Ono. In the even-power case, we extend Lehmer’s conjecture on the coefficients of the discriminant function \(\Delta \) to all non-CM-forms. All our results are supported with numerical data. For example all Fourier coefficients \(a_9(n)\) of the 9-th power of the Dedekind eta function are non-vanishing for \(n \le 10^{10}\). We also relate the non-vanishing of the Fourier coefficients of \(\Delta ^2\) to Maeda’s conjecture.


Fourier coefficients Euler products Dedekind eta function Lehmer conjecture Maeda conjecture 

Mathematics Subject Classification

Primary 05A17 11F20 Secondary 11F30 11F37 



The authors thank the two referee’s for their valuable reports, and Neil Dummigan and Susanne Schrumpf for their useful support and comments. Several of the scientific computations had been performed at the Max-Planck-Institute of Mathematics in Bonn. We thank the Institute for providing us with their software and high performance workstations.


  1. 1.
    Bruinier, J.: Borcherds Products on \((2,l)\) and Chern Classes of Heegner Divisors. Lecture Notes in Mathematics, vol. 1780. Springer, Berlin (2002)CrossRefGoogle Scholar
  2. 2.
    Cohen, H., Strömberg, F.: Modular Forms: A Classical Approach. Graduate Studies in Mathematics. American Mathematical Society, Providence (2017)CrossRefGoogle Scholar
  3. 3.
    Costello, P.: Density problems involving \(p_r(n)\). Math. Comput. 38(158), 633–637 (1982)zbMATHGoogle Scholar
  4. 4.
    Datskovsky, B., Guerzhoy, P.: On the Ramanujan congruences for modular forms of integral and half-integral weights. Proc. AMS 124(8), 2283–2290 (1996)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Derickx, M., Hoelj, M., Zeug, J.: Computing Galois representations and equations for modular curves \(X_H(l)\). ArXiv:1312.6819v2 [math.NT] (18Mar2014)
  6. 6.
    Ghitza, A., McAndrew, A.: Experimental evidence for Maeda’s conjecture on modular forms. Tbil. Math. J. 5(2), 55–69 (2012)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Hart, W., Johansson, F., Pancratz, S.: FLINT: Fast Library for Number Theory, Version 2.4.0 (2013)Google Scholar
  8. 8.
    Hart, W. B.: Fast library for number theory: an introduction. In: Proceedings of the Third International Congress on Mathematical Software (Berlin, Heidelberg), ICMS’10, Springer-Verlag, pp. 88–91 (2010)Google Scholar
  9. 9.
    Hida, H., Maeda, Y.: Non-abelian base change for totally real fields. In: Pacific J. Math. Special Issue. Olga Taussky-Todd: in memoriam, pp. 189–217 (1997)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Heim, B., Neuhauser, M., Rupp, F.: Fourier coefficients of powers of the Dedekind eta function. Ramanujan J. (2017).
  11. 11.
    Koecher, M., Krieg, A.: Elliptische Funktionen und Modulformen. Springer, Berlin-Heidelberg-New York (2007)zbMATHGoogle Scholar
  12. 12.
    Köhler, G.: Eta Products and Theta Series Identities. Springer Monographs in Mathematics. Springer, Berlin-Heidelberg-New York (2011)CrossRefGoogle Scholar
  13. 13.
    Lehmer, D.: The vanishing of Ramanujan’s \(\tau (n)\). Duke Math. J. 14, 429–433 (1947)MathSciNetCrossRefGoogle Scholar
  14. 14.
    van Lint, J.H.: Hecke Operators and Euler Products. Thesis, Utrecht (1957)Google Scholar
  15. 15.
    Miyake, T.: Modular Forms. Reprint of the 1989 English ed., Springer Monogr. in Math. Springer Berlin, Heidelberg, New York (2006)Google Scholar
  16. 16.
    Newman, M.: An identity for the coefficients of certain modular forms. J. Lond. Math. Soc. 30, 488–493 (1955)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Newman, M.: A table of the coefficients of the powers of \(\eta (\tau )\). Proc. Acad. Amst. 59, 204–216 (1956)MathSciNetGoogle Scholar
  18. 18.
    Neher, E.: Jacobis Tripleprodukt-Identität und \(\eta \)-Identitäten in der Theorie der affinen Lie-Algebren. Jahresber. Math. Ver. 87, 164–181 (1985)zbMATHGoogle Scholar
  19. 19.
    Ono, K.: A note on the Shimura correspondence and the Ramanujan \(\tau (n)\) function. Util. Math. 47, 170–180 (1995)MathSciNetGoogle Scholar
  20. 20.
    Ono, K., Robins, S.: Superlacunary cusp forms. Proc. AMS 123(4), 1021–1029 (1995)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Ono, K.: Gordon’s \(\epsilon \)-conjecture on the lacunarity of modular forms. C. R. Math. Rep. Acad. Sci. Can. 20, 103–107 (1998)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Ono, K.: The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-Series, vol. 102. American Mathematical Society, Providence (2003)CrossRefGoogle Scholar
  23. 23.
    Ribet, K.: Galois representations attached to eigenforms with Nebentypus. Lect. Notes Math. 601, 18–52 (1977)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Serre, J.: Quelques applications du théorèm de densité de Chebotarov. Inst. Hautes Études Sci. 54, 323–401 (1981)Google Scholar
  25. 25.
    Serre, J.: Sur la lacunarité des puissances de \(\eta \). Glasgow Math. J. 27, 203–221 (1985)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Shimura, G.: Introduction to the Arithmetical Theory of Automorphic Functions. Iwanami Shoten and Princeton Univ. Press, Princeton (1971)zbMATHGoogle Scholar
  27. 27.
    Shimura, G.: On modular forms of half-integral weight. Ann. Math. 97, 440–481 (1973)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Wohlfahrt, K.: Über Operatoren Heckescher Art bei Modulformen reeller Dimension. Math. Nachrichten 16, 233–256 (1957)MathSciNetCrossRefGoogle Scholar

Copyright information

© SpringerNature 2018

Authors and Affiliations

  1. 1.German University of Technology in OmanMuscatSultanate of Oman
  2. 2.Max-Planck-Institute for MathematicsBonnGermany

Personalised recommendations