Spatial Regression Analysis of Poverty in R

  • Maria Kamenetsky
  • Guangqing ChiEmail author
  • Donghui Wang
  • Jun Zhu
Teaching and Software


Poverty has been studied across many social science disciplines, resulting in a large body of literature. Scholars of poverty research have long recognized that the poor are not uniformly distributed across space. Understanding the spatial aspect of poverty is important because it helps us understand place-based structural inequalities. There are many spatial regression models, but there is a learning curve to learn and apply them to poverty research. This manuscript aims to introduce the concepts of spatial regression modeling and walk the reader through the steps of conducting poverty research using R: standard exploratory data analysis, standard linear regression, neighborhood structure and spatial weight matrix, exploratory spatial data analysis, and spatial linear regression. We also discuss the spatial heterogeneity and spatial panel aspects of poverty. We provide code for data analysis in the R environment and readers can modify it for their own data analyses. We also present results in their raw format to help readers become familiar with the R environment.


Poverty Exploratory spatial data analysis Spatial regression 



This research was supported in part by the National Science Foundation (Awards # CMMI-1541136, # OPP-1745369, # SES-1823633, and # DGE-1806874), the National Aeronautics and Space Administration (Award # NNX15AP81G), the Eunice Kennedy Shriver National Institute of Child Health and Human Development (Award # P2C HD041025), the National Institute on Alcohol Abuse and Alcoholism (Award # U24 AA027684-01), and the Social Science Research Institute, Population Research Institute, and the Institutes for Energy and the Environment of the Pennsylvania State University.


  1. Anselin, L. (1988). Spatial econometrics: Methods and models. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  2. Anselin, L. (1990). Spatial dependence and spatial structural instability in applied regression analysis. Journal of Regional Science, 30, 185–207.CrossRefGoogle Scholar
  3. Anselin, L., & Bera, A. (1998). Spatial dependence in linear regression models with an introduction to spatial econometrics. In A. Ullah & D. Giles (Eds.), Handbook of applied economic statistics (pp. 237–289). New York, NY: Marcel Dekker.Google Scholar
  4. Baller, R. D., & Richardson, K. K. (2002). Social integration, imitation, and the geographic patterning of suicide. American Sociological Review, 67, 873–888.CrossRefGoogle Scholar
  5. Baltagi, B., & Li, D. (2004). Prediction in the panel data model with spatial autocorrelation. In L. Anselin, R. J. G. M. Florax, & S. Rey (Eds.), Advances in spatial econometrics: Methodology, tools, and applications (pp. 283–295). New York, NY: Springer.CrossRefGoogle Scholar
  6. Bennett, K. J., Probst, J. C., & Pumkam, C. (2011). Obesity among working age adults: The role of county-level persistent poverty in rural disparities. Health and Place, 17, 1174–1181.CrossRefGoogle Scholar
  7. Bivand, R., Pebesma, E., & Gomez-Rubio, V. (2013). Applied spatial data analysis with R. New York, NY: Wiley.CrossRefGoogle Scholar
  8. Cressie, N. (1993). Statistics for spatial data. New York, NY: Wiley.Google Scholar
  9. Curtis, K. J., Lee, J., O’Connell, H. A., & Zhu, J. (2018). The spatial distribution of poverty and the long reach of the industrial makeup of places: New evidence on spatial and temporal regimes. Rural Sociology. Scholar
  10. Curtis, K. J., Voss, P. R., & Long, D. D. (2012). Spatial variation in poverty-generating processes: Child poverty in the United States. Social Science Research, 41(1), 146–159.CrossRefGoogle Scholar
  11. Duncan, C. M. (1999). Worlds apart: Why poverty persists in rural America. New Haven, CT: Yale University Press.Google Scholar
  12. Dutilleul, P. R. L. (2011). Spatio-temporal heterogeneity: Concepts and analyses. New York, NY: Cambridge University Press.Google Scholar
  13. Elhorst, J. P. (2001). Dynamic models in space and time. Geographical Analysis, 33, 119–140.CrossRefGoogle Scholar
  14. Elhorst, J. P. (2010). Applied spatial econometrics: Raising the bar. Spatial Economic Analysis, 5(1), 9–28.CrossRefGoogle Scholar
  15. Fotheringham, A. S., Brunsdon, M., & Charlton, M. (1998). Geographically weighted regression: A natural evolution of the expansion method for spatial data analysis. Environment and Planning A: Economy and Space, 30, 1905–1927.CrossRefGoogle Scholar
  16. Fox, J., Weisberg, S. (2011). An R companion to applied regression, 2nd edn. Thousand Oaks CA: Sage.
  17. Goetz, S. J., & Swaminathan, H. (2006). Wal-Mart and county-wide poverty. Social Science Quarterly, 87, 211–226.CrossRefGoogle Scholar
  18. Golgher, A. B., & Voss, P. R. (2016). How to interpret the coefficients of spatial models: Spillovers, direct and indirect effects. Spatial Demography, 4, 175–2015.CrossRefGoogle Scholar
  19. Greenlee, R. T., & Howe, H. L. (2009). County-level poverty and distant stage cancer in the United States. Cancer Causes and Control, 20, 989–1000.CrossRefGoogle Scholar
  20. Huang, B., Wu, B., & Barry, M. (2010). Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. International Journal of Geographical Information Science, 24(3), 383–401.CrossRefGoogle Scholar
  21. Iceland, J. (2013). Poverty in America: A handbook (3rd ed.). Berkeley, CA: University of California.Google Scholar
  22. Jennings, J. (1999). Persistent poverty in the United States: Review of theories and explanations. In Louis Kushnick & James Jennings (Eds.), A new introduction to poverty: The role of race, power and politics (pp. 13–38). New York, NY: New York University Press.Google Scholar
  23. Lee, L., & Yu, J. (2010). Some recent developments in spatial panel data models. Regional Science and Urban Economics, 40(5), 255–271.CrossRefGoogle Scholar
  24. LeSage, J. P. (1999). A spatial econometric examination of China’s economic growth. Geographic Information Sciences, 5, 143–153.Google Scholar
  25. LeSage, J. P., & Pace, R. K. (2009). Introduction to spatial econometrics. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
  26. Levernier, W., Partridge, M. D., & Rickman, D. S. (2000). The causes of regional variations in U.S. poverty: A cross-country analysis. Journal of Regional Science, 40, 473–497.CrossRefGoogle Scholar
  27. Lichter, D. T., & Johnson, K. M. (2007). The changing spatial concentration of america’s rural poor population. Rural Sociology, 72, 331–358.CrossRefGoogle Scholar
  28. Lobao, L. M., Hooks, G., & Tickamyer, A. R. (2008). Poverty and inequality across space: Sociological reflections on the missing-middle subnational scale. Cambridge Journal of Regions, Economy and Society, 1, 89–113.CrossRefGoogle Scholar
  29. Lovelace, R., Nowosad, J., & Muenchow, J. (2019). Geocomputation with R. Boca Raton: CRC Press.Google Scholar
  30. Nord, M., Luloff, A. E., & Jensen, L. (1995). Migration and the spatial concentration of poverty. Rural Sociology, 60, 399–415.CrossRefGoogle Scholar
  31. Patton, M., & McErlean, S. (2003). Spatial effects within the agricultural land market in Northern Ireland. Journal of Agricultural Economics, 54, 35–54.CrossRefGoogle Scholar
  32. Pebesma, E. (2018). Simple features for R: Standardized support for spatial vector data. The R Journal, 10(1), 439–446.CrossRefGoogle Scholar
  33. Pebesma, E., Bivand, R., Rowlingson, B., Gomez-Rubio, V., Hijmans, R., Sumner, M., et al. (2018). Package ‘sp’. R package version 1.3-1.
  34. Sandoval, D. A., Mark, R., & Thomas, H. (2009). The increasing risk of poverty across the american life course. Demography, 46(4), 717–737.CrossRefGoogle Scholar
  35. Sparks, C. (2013a). Spatial analysis in R: Part 1. Spatial Demography, 1, 131–139.CrossRefGoogle Scholar
  36. Sparks, C. (2013b). Spatial analysis in R: Part 2. Spatial Demography, 1, 219–226.CrossRefGoogle Scholar
  37. Thiede, B., Kim, H., & Valasik, M. (2018). The spatial concentration of America’s rural poor population: A postrecession update. Rural Sociology, 83, 109–144.CrossRefGoogle Scholar
  38. Tickamyer, A. R., & Duncan, C. M. (1990). Poverty and opportunity. Annual Review of Sociology, 16, 67–86.CrossRefGoogle Scholar
  39. Vaughan, A. S., Rosenberg, E., Shouse, R. L., & Sullivan, P. S. (2014). Connecting race and place: A county-level analysis of White, Black, and Hispanic HIV prevalence, poverty, and level of urbanization. American Journal of Public Health, 104, 77–84.CrossRefGoogle Scholar
  40. Voss, P. R., Long, D. D., Hammer, R. B., & Friedman, S. (2006). County child poverty rates in the US: A spatial regression approach. Population Research and Policy Review, 25, 369–391.CrossRefGoogle Scholar
  41. Walker, K. (2018). Tigris: Load census TIGER/Line Shapefiles. R package version 0.7.
  42. Weber, B., Jensen, L., Miller, K., Mosley, J., & Fisher, M. (2005). A critical review of rural poverty literature: Is there truly a rural effect? International Regional Science Review, 28, 381–414.CrossRefGoogle Scholar
  43. Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. New York: Springer.CrossRefGoogle Scholar
  44. Wickham, W., Hester, J., François, R. (2018a). readr: Read Rectangular Text Data. R package version 1.3.1.
  45. Wickham, H., François, R., Henry, L., Müller, K. (2018b). dplyr: A Grammar of Data Manipulation. R package version 0.7.8.
  46. Wimberley, R. C., & Morris, L. (2002). The regionalization of poverty: Assistance for the black belt south? Southern Rural Sociology, 18, 294–306.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Population Health SciencesUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of Agricultural Economics, Sociology, and Education, Population Research Institute, and Social Science Research InstituteThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Center on Contemporary ChinaPrinceton UniversityPrincetonUSA
  4. 4.Department of StatisticsUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations