Advertisement

Progress in Additive Manufacturing

, Volume 4, Issue 2, pp 155–165 | Cite as

In situ measurement of part geometries in layer images from laser beam melting processes

  • Joschka zur JacobsmühlenEmail author
  • Jan Achterhold
  • Stefan Kleszczynski
  • Gerd Witt
  • Dorit Merhof
Full Research Article
  • 156 Downloads

Abstract

Laser beam melting (LBM) enables production of three-dimensional parts from metallic powder with very high geometrical complexity and very good mechanical properties. In LBM, a thin layer of metallic powder is deposited onto the build platform and melted by a laser according to the desired part geometry. Until today, the potential of LBM for critical applications such as medical devices and aerospace has not been exploited due to the lack of build stability and quality management. We present an image analysis method, which segments part contours in high-resolution images of LBM-produced layers. Based on the reference contour from 2D slices of the 3D part model and edge-detection results, a graph model is built and segmented using Graph Cuts (min-cut max-flow algorithm). Our method is evaluated on 124 part contours from 5 build jobs with different part geometries. Iterative GrabCut segmentation on nonlinearly smoothed images achieves the best results with a median Jaccard distance of 0.035 (32 % improvement over the reference geometry masks) and a mean contour distance below 2.4 px (36.4 % improvement).

Keywords

Laser beam melting Additive manufacturing Geometry inspection Quality assurance 

Notes

Compliance with ethical standards

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    VDI-Fachbereich Produktionstechnik und Fertigungsverfahren: VDI 3405 (2014) Additive manufacturing processes, rapid manufacturing. Basics, definitions, processes. VDI-Gesellschaft Produktion und LogistikGoogle Scholar
  2. 2.
    Meiners W (1999) Direktes selektives Laser-Sintern einkomponentiger metallischer Werkstoffe. Ph.D. thesis, RWTH Aachen University, AachenGoogle Scholar
  3. 3.
    Mani M, Lane B, Donmez A, Feng S, Moylan S, Fesperman R (2015) Measurement science needs for real-time control of additive manufacturing powder bed fusion processes. Tech. rep., National Institute of Standards and Technology (NIST).  https://doi.org/10.6028/NIST.IR.8036
  4. 4.
    Thomas D (2009) The development of design rules for selective laser melting. phd thesis, University of Wales, CardiffGoogle Scholar
  5. 5.
    Bamberg J, Zenzinger G, Ladewig A (2016) In-process control of selective laser melting by quantitative optical tomography. In: 19th World Conference on Non-Destructive TestingGoogle Scholar
  6. 6.
    zur Jacobsmühlen J, Kleszczynski S, Ladewig A, Witt G, Merhof D (2016) In-situ surface roughness measurement of laser beam melted parts—a feasibility study of layer image analysis. In: Fraunhofer IWU, B. Müller (eds.) Proc. of the Fraunhofer Direct Digital Manufacturing Conference, pp 231–240. Fraunhofer VerlagGoogle Scholar
  7. 7.
    Królikowski M, Filipowicz K (2013) Verification of geometrical accuracy of selective laser melting (SLM) built model. Adv Manuf Sci Technol 37(3):85–91.  https://doi.org/10.2478/amst-2013-0026 Google Scholar
  8. 8.
    Craeghs T, Clijsters S, Yasa E, Kruth JP (2011) Online quality control of selective laser melting. In: Proc. 22nd Annual International Solid Freeform (SFF) Symposium. Austin, TXGoogle Scholar
  9. 9.
    Kleszczynski S, zur Jacobsmühlen J, Sehrt JT, Witt G (2012) Error detection in laser beam melting systems by high resolution imaging. In: Proc. 23rd Annual International Solid Freeform Fabrication (SFF) SymposiumGoogle Scholar
  10. 10.
    zur Jacobsmühlen J, Kleszczynski S, Schneider D, Witt G (2013) High resolution imaging for inspection of laser beam melting systems. In: 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp 707–712.  https://doi.org/10.1109/I2MTC.2013.6555507
  11. 11.
    Berumen S, Bechmann F, Craeghs T (2012) Quality control for the coating process in laser- and powder bed-based additive manufacturing technologies. In: Fraunhofer Direct Digital Manufacturing Conference 2012Google Scholar
  12. 12.
    Cooke AL, Moylan SP (2011) Process intermittent measurement for powder-bed based additive manufacturing. In: Proc. 22nd Annual International Solid Freeform (SFF) SymposiumGoogle Scholar
  13. 13.
    Gatto M, Harris RA (2011) Non-destructive analysis (NDA) of external and internal structures in 3DP. Rapid Prototyp J 17(2):128–137.  https://doi.org/10.1108/13552541111113871 CrossRefGoogle Scholar
  14. 14.
    Pedersen DB (2013) Additive manufacturing: multi material processing and part quality control. Ph.D. thesis, The Technical University of DenmarkGoogle Scholar
  15. 15.
    Aminzadeh M, Kurfess T (2015) Layerwise automated visual inspection in laser powder-bed additive manufacturing. In: ASME 2015 International Manufacturing Science and Engineering Conference Volume 2: Materials; Biomanufacturing; Properties, Applications and Systems; Sustainable Manufacturing.  https://doi.org/10.1115/MSEC2015-9393
  16. 16.
    Aminzadeh M (2016) A machine vision system for in-situ quality inspection in metal powder-bed additive manufacturing. Ph.D. thesis, Georgia TechGoogle Scholar
  17. 17.
    Abdelrahman M, Reutzel EW, Nassar AR, Starr TL (2017) Flaw Detection in Powder Bed Fusion Using Optical Imaging. Addit Manuf.  https://doi.org/10.1016/j.addma.2017.02.001
  18. 18.
    Foster BK, Reutzel EW, Nassar AR, Hall BT, Brown SW, Dickman CJ (2015) Optical, layerwise monitoring of powder bed fusion. In: Proceedings of the Twenty-Sixth Annual International Solid Freeform (SFF) Symposium, pp 295–307Google Scholar
  19. 19.
    Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 3431–3440.  https://doi.org/10.1109/CVPR.2015.7298965
  20. 20.
    zur Jacobsmühlen J, Achterhold J, Kleszczynski S, Witt G, Merhof D (2016) Robust calibration marker detection in powder bed images from laser beam melting processes. In: 2016 IEEE International Conference on Industrial Technology (ICIT), pp 910–915.  https://doi.org/10.1109/ICIT.2016.7474873
  21. 21.
    Yasa E, Deckers J, Craeghs T, Badrossamay Kruth JP (2009) Investigation on occurence of elevated edges in selective laser melting. In: Proc. 20th Annual International Solid Freeform Fabrication (SFF) Symposium, pp 180–192Google Scholar
  22. 22.
    Alcantarilla P, Nuevo J, Bartoli A (2013) Fast explicit diffusion for accelerated features in nonlinear scale spaces. In: Proc. of the British Machine Vision Conference. BMVA Press. DOIurl0.5244/C.27.13Google Scholar
  23. 23.
    Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. Pattern Anal Mach Intell IEEE Trans 12(7):629–639.  https://doi.org/10.1109/34.56205 CrossRefGoogle Scholar
  24. 24.
    Jacob M, Unser M (2004) Design of steerable filters for feature detection using Canny-Like criteria. Pattern Anal Mach Intell IEEE Trans 26(8):1007–1019.  https://doi.org/10.1109/TPAMI.2004.44 CrossRefGoogle Scholar
  25. 25.
    Dollár P, Zitnick C (2013) Structured forests for fast edge detection. In: Computer Vision (ICCV), 2013 IEEE International Conference on, 1841–1848.  https://doi.org/10.1109/ICCV.2013.231
  26. 26.
    Boykov Y, Kolmogorov V (2004) An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision. Pattern Anal Mach Intell IEEE Trans 26(9):1124–1137.  https://doi.org/10.1109/TPAMI.2004.60 CrossRefzbMATHGoogle Scholar
  27. 27.
    Rother C, Kolmogorov V, Blake A (2004) ’GrabCut’: interactive foreground extraction using iterated graph cuts. ACM Trans Graph 23(3):309–314.  https://doi.org/10.1145/1015706.1015720 CrossRefGoogle Scholar
  28. 28.
    Rother C, Kolmogorov V, Boykov Y, Blake A (2011) Interactive foreground extraction using graph cut. Microsoft Technical Report: MSR-TR-2011-46. https://www.microsoft.com/en-us/research/publication/interactive-foreground-extraction-using-graph-cut/
  29. 29.
    Zhang TY, Suen CY (1984) A fast parallel algorithm for thinning digital patterns. Commun ACM 27(3):236–239.  https://doi.org/10.1145/357994.358023 CrossRefGoogle Scholar
  30. 30.
    Jaccard P (1901) Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions voisines. Bull Soc Vaud Sci Nat 37:241–272Google Scholar
  31. 31.
    Kim HS, Park SB, Lo SS, Monroe JI, Sohn JW (2012) Bidirectional local distance measure for comparing segmentations. Med Phys 39(11):6779–6790.  https://doi.org/10.1118/1.4754802 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Imaging and Computer VisionRWTH Aachen UniversityAachenGermany
  2. 2.Chair of Manufacturing TechnologyInstitute for Product Engineering, University of Duisburg-EssenDuisburgGermany

Personalised recommendations