Progress in Additive Manufacturing

, Volume 4, Issue 2, pp 117–129 | Cite as

Laser beam build-up welding of AlSi12-powder on AlSi1MgMn-alloy substrate

  • Wei ZhangEmail author
  • Anton Evdokimov
  • Leander Schleuß
  • Ralf Ossenbrink
  • Vesselin Michailov
Full Research Article


In the present work, laser beam build-up welding of AlSi12 alloy powder on AlSi1MgMn-alloy (EN AW-6082) substrate has been studied to determine the laser deposition strategy for fabrication of 3-D structure. First, the influence of laser power, scanning speed and powder feeding rate on the output parameters, such as clad geometry, dilution ratio, powder efficiency and porosity were analysed for deposition of a single track. Mathematical relationships were then established and the optimal parameters were identified by the desirability approach. Second, these optimal process parameters are furthermore adjusted to fabricate rectangular, cylindrical and complex combination volumes; different layer deposition strategies are used and evaluated. Finally, by using an adapted deposition strategy, one prototype consisted of different complexly shaped elements on one curved Al-alloy substrate without welding fusion defects was manufactured. The average tensile strength of deposited samples with four different layer deposition directions (vertical 0°/90°; horizontal 0°/90°; horizontal 0° and horizontal 90°) was measured, respectively, which are comparable strengths or higher than those of cast samples. The microstructure of the laser-deposited material is investigated using optical microscopy and scanning electron microscopy as well as microcomputed tomography. Microstructure and hardness of deposited multilayers exhibit inhomogeneous distributions, which vary with the deposit location.


Laser beam build-up welding Laser metal deposition AlSi12 Additive manufacturing Build-up strategy 



This work was supported by the German Research Foundation (DFG) under the Major Research Instrumentation program INST 263/59-1 FUGG; the European Regional Development Fund (EFRE) under Grant no. 85002924. The authors are grateful to Prof. M. Bambach, Chair Mechanical Design and Manufacturing, Brandenburg University of Technology Cottbus-Senftenberg for the collaboration and to Mr. M. Priefer for the experimental support.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos Part B 143:172–1043. CrossRefGoogle Scholar
  2. 2.
    Zhang W, Melcher R, Travitzky N, Bordia RK, Greil P (2009) Three-dimensional printing of complex-shaped alumina/glass composites. Adv Eng Mater 11(12):1039–1043. Google Scholar
  3. 3.
    Gu DD, Meiners W, Wissenbach K, Poprawe R (2012) Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev 57(3):133–164. CrossRefGoogle Scholar
  4. 4.
    Das S, Wohlert M, Beamann JJ, Bourell DL (1998) Producing metal parts with selective laser sintering/hot isostatic pressing. JOM 50(12):17–20CrossRefGoogle Scholar
  5. 5.
    Hanninen J (2002) Direct metal laser sintering. Adv Mater Process 160:33–36Google Scholar
  6. 6.
    Santos EC, Shiomo M, Osakada K, Abe F (2004) Microstructure and mechanical properties of pure titanium models fabricated by selective laser melting. Proc Instn Mech Engrs Part C J Mech Eng Sci 218(7):711–719. CrossRefGoogle Scholar
  7. 7.
    Abe F, Osakada K, Shiomi M, Uematsu K, Matszmoto M (2001) The manufacturing of hard tools from metallic powders by selective laser melting. J Mater Process Technol 111:210–213. CrossRefGoogle Scholar
  8. 8.
    Siddique S, Imran M, Wycisk E, Emmelmann C, Walther F (2016) Fatigue assessment of laser additive manufactured AlSi12 eutectic alloy in the very high cycle fatigue (VHCF) range up to 1E9 cycles. Mater Today Proc 3:2853–2860. CrossRefGoogle Scholar
  9. 9.
    Santos EC, Shiomi M, Osakada K, Laoui T (2006) Rapid manufacturing of metal components by laser forming. Int J Mach Tolls Manuf 46:1459–1468. CrossRefGoogle Scholar
  10. 10.
    Hu DM, Kovacevis R (2003) Sensing, modeling and control for laser-based additive manufacturing. Int J Mach Tolls Manuf 43(1):51–60. CrossRefGoogle Scholar
  11. 11.
    Zhang W, Priefer M, Olenina M, Ossenbrink R, Michailov V (2016) Additive manufacturing by laser beam build-up welding. In: Proceedings iCAT, 6th International Conference on Additive Technologies, Nürnberg, Germany (ISBN: 978-961-285-537-6, pp 324–327)Google Scholar
  12. 12.
    Nowotny S, Scharek S, Beyer E, Richter KH (2007) Laser beam build-up welding; precision in repair, surface cladding, and direct 3D metal deposition. J Therm Spray Technol 16(3):344–348. CrossRefGoogle Scholar
  13. 13.
    Hedges M (2004) Laser based additive manufacturing using LENS™ and M3D™. In: Proceedings 4th LANE, Erlangen, Germany (ISBN: 3-87525-202-0, pp 523–534)Google Scholar
  14. 14.
    Wu X, Sharman R, Mei J, Voice W (2002) Direct laser fabrication and microstructure of a burn-resistant Ti alloy. Mater Des 23:239–247. CrossRefGoogle Scholar
  15. 15.
    Brandl E, Michailov V, Viehweger B, Leyens C (2011) Deposition of Ti-6Al-4V using laser and wire, part I: microstructural properties of single beads. Surf Coat Technol 206:1120–1129. CrossRefGoogle Scholar
  16. 16.
    Brandl E, Michailov V, Viehweger B, Leyens C (2011) Deposition of Ti-6Al-4V using laser and wire, part II: hardness and dimensions of single beads. Surf Coat Technol 206:1130–1141. CrossRefGoogle Scholar
  17. 17.
    Brandl E, Palm E, Michailov V, Viehweger B, Leyens C (2011) Mechanical properties of additive manufactured titanium (Ti-6Al-4V) blocks deposited by a solid-state laser and wire. Mater Des 32:4665–4675. CrossRefGoogle Scholar
  18. 18.
    Kathuria YP (2001) An overview of 3D structuring in microdomain. J Indian Inst Sci 81:659–664Google Scholar
  19. 19.
    Kathuria YP (2000) Laser assisted metal rapid prototyping in microdomain. In: Proceedings of the Eighth International Conference on Rapid Prototyping, TokyoGoogle Scholar
  20. 20.
    Zhang QL, Yao JH, Mazumder J (2011) Laser direct metal deposition technology and microstructure and composition segregation of Inconel 718 superalloy. J Iron Steel Res Int 18(4):73–78. CrossRefGoogle Scholar
  21. 21.
    Liu FC, Lin X, Yang GL, Song MH, Chen J, Huang WD (2011) Microstructure and residual stress of laser rapid formed Inconel 718 nickel-base superalloy. Opt Laser Technol 43:208–213. CrossRefGoogle Scholar
  22. 22.
    Dinda DP, Dasgupta AK, Mazumder J (2009) Laser aided direct metal deposition of Inconel 625 superalloy: microstructural evolution and thermal stability. Mater Sci Eng A 509(1–2):98–104. CrossRefGoogle Scholar
  23. 23.
    Li J, Wang HM (2010) Microstructure and mechanical properties of rapid directionally solidified Ni-base superalloy Reneʼ41 by laser melting deposition manufacturing. Mater Sci Eng A 527(18–19):4823–4829. CrossRefGoogle Scholar
  24. 24.
    Gao YL, Wang CS, Yao M, Liu HB (2007) The resistance to wear and corrosion of laser-cladding Al2O3 ceramic coating on Mg alloy. Appl Surf Sci 253(12):5306–5311. CrossRefGoogle Scholar
  25. 25.
    Cui ZQ, Yang HW, Wang WX, Wu HL, Xu BH (2012) Laser cladding Al-Si/Al2O3-TiO2 composite coatings on AZ31B magnesium alloy. J Wuhan Univ Technol Mater Sci Ed 27(6):1042–1047. CrossRefGoogle Scholar
  26. 26.
    Sun RL, Yang DZ, Guo LX, Dong SL (2001) Laser cladding of Ti-6Al-4V alloy with TiC and TiC-NiCrBSi powders. Surf Coat Technol 135(2–3):307–312. CrossRefGoogle Scholar
  27. 27.
    Wang XH, Pan XN, Du BS, Li S (2013) Production of in situ TiB2 + TiC/Fe composite coating from precursor containing B4C-TiO2-Al powders by laser cladding. Trans Nonferrous Met Soc China 23:1689–1693. CrossRefGoogle Scholar
  28. 28.
    Lusquiños F, Pou J, Quintero F, Pérez-Amor M (2009) Laser cladding of SiC/Si composite coating on Si-SiC ceramic substrates. Surf Coat Technol 202(9):1588–1593. CrossRefGoogle Scholar
  29. 29.
    Ouyang JH, Nowotny S, Richter A, Beyer E (2001) Characterization of laser clad yttria partially-stabilized ZrO2 ceramic layers on steel 16MnCr5. Surf Coat Technol 137(1):12–20. CrossRefGoogle Scholar
  30. 30.
    Ouyang JH, Nowotny S, Richter A, Beyer E (2001) Laser cladding of yttria partially stabilized ZrO2 (YPSZ) ceramic coatings on aluminum alloys. Ceram Int 27(1):15–24. CrossRefGoogle Scholar
  31. 31.
    Ocylok S, Weisheit A (2009) Multi-graded layers by laser cladding for wear and corrosion protection of die-casting moulds. In: Proceedings of the Fifth WLT-Conference Lasers in Manufacturing, Munich, Germany (ISBN: 9783000279942, pp 121–124)Google Scholar
  32. 32.
    Dinda GP, Dasgupta AK, Mazumder J (2012) Evolution of microstructure in laser deposited Al-11.28%Si alloy. Surf Coat Technol 206(8–9):2152–2160. CrossRefGoogle Scholar
  33. 33.
    Dinda GP, Dasgupta AK, Bhattacharya S, Natu H, Dutta B, Mazumder J (2013) Microstructural characterization of laser-deposited Al 4047 alloy. Metall Mater Trans A 44(5):2233–2242. CrossRefGoogle Scholar
  34. 34.
    Pei YT, Hosson JThMDe (2000) Functionally graded materials produced by laser cladding. Acta Mater 48:2617–2624. CrossRefGoogle Scholar
  35. 35.
    Gao YL, Wang CS, Li Q, Liu HB, Yao M (2006) Broad-beam laser cladding of Al-Si alloy coating on AZ91HP magnesium alloy. Surf Coat Technol 201(6):2701–2706. CrossRefGoogle Scholar
  36. 36.
    Liu S, Kovacevic R (2014) Statistical analysis and optimization of processing parameters in high-power direct diode laser cladding. Int J Adv Manuf Technol 74(5–8):867–878. CrossRefGoogle Scholar
  37. 37.
    Balu P, Leggett P, Hamid S, Kovacevic R (2013) Multi-response optimization of laser-based powder deposition of multi-track single layer Hastelloy C-276. Mater Manuf Process 28(2):173–182. CrossRefGoogle Scholar
  38. 38.
    Sun YW, Hao MZ (2012) Statistical analysis and optimization of process parameters in Ti6Al4V laser cladding using Nd:YAG laser. Opt Lasers Eng 50:985–995. CrossRefGoogle Scholar
  39. 39.
    Candioti LV, De Zan MM, Cámara MS, Goicoechea HC (2014) Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta 124:123–138. CrossRefGoogle Scholar
  40. 40.
    Zheng B, Zhou Y, Smugeresky JE, Schoenung JM, Lavernia EJ (2008) Thermal behavior and microstructure evolution during laser deposition with laser-engineered net shaping: Part II. Experimental investigation and discussion. Metall Mater Trans A 39A:2237–2245. CrossRefGoogle Scholar
  41. 41.
    Weingarten C, Buchbinder D, Pirch N, Meiners W, Wissenbach K, Poprawe R (2015) Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg. J Mater Process Technol 221:112–120. CrossRefGoogle Scholar
  42. 42.
    Prashanth KG, Scudino S, Klauss HJ, Surreddi KB, Löber L, Wang Z, Chaubey AK, Kühn U, Eckert J (2014) Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment. Mater Sci Eng A 590:153–160. CrossRefGoogle Scholar
  43. 43.
    Milligan J, Shockley JM, Chromik RR, Brochu M (2013) Tribological performance of Al-12Si coatings created via electrospark deposition and spark plasma sintering. Tribol Int 66:1–11. 12CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Joining and Welding TechnologyBrandenburg University of Technology Cottbus-SenftenbergCottbusGermany

Personalised recommendations