Advertisement

Progress in Additive Manufacturing

, Volume 4, Issue 2, pp 83–95 | Cite as

Topology optimization and additive manufacturing for aerospace components

  • Laura BerrocalEmail author
  • Rosario Fernández
  • Sergio González
  • Antonio Periñán
  • Santos Tudela
  • Jorge Vilanova
  • Luis Rubio
  • Jose Manuel Martín Márquez
  • Javier Guerrero
  • Fernando Lasagni
Full Research Article

Abstract

One of the main challenges for the aerospace industry nowadays lies in weight reduction of aircraft components without compromising their structural functionalities. With that goal, structural and topology optimization show up as a combination of design and modelling techniques. Based on the finite element method (FEM), component optimization consists of removing material which is dispensable, keeping proper functioning of the modelled part. The result is an optimized geometry, usually with a complex shape, which is possible to manufacture thanks to additive manufacturing (AM) technologies. In this paper, the topological optimization methodology has been used to redesign the following components: (1) a connector support of the VEGA space launcher, (2) a typical lever component from civil aircrafts and (3) housing part from fan cowl structures. In all of the cases, a significant weight reduction has been reached without major impact on their mechanical behaviour. Finally, components (1) and (2) were manufactured by laser beam melting (LBM) technology to demonstrate the possibility of the couple, optimization and AM concepts, as a way to improve the future aerospace structures.

Keywords

Topology optimization Additive manufacturing Aerospace components design Laser beam melting Laser-based powder bed fusion of metals Weight reduction 

Notes

References

  1. 1.
    Schmit LA (1960) Structural design and structural optimizations. In: Proceedings on the 2nd conference on electronic computation, American Society of Civil Engineering, New York, pp 105–122Google Scholar
  2. 2.
    Haslinger J, Mäkinen RAE (2003) Introduction to shape optimization: theory, approximation and computation. SIAM, PhiladelphiaCrossRefzbMATHGoogle Scholar
  3. 3.
    Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Osher S, Santosa S (2001) Level set methods for optimization problems involving geometry and constraints I. Frequencies of a two-density inhomogeneous drum. J Comput Phys 171:272–288MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Shojaee S, Mohammadian M (2012) Structural topology optimization using an enhanced level set method. Sci Iran 19:1157–1167CrossRefGoogle Scholar
  7. 7.
    Dede L, Borden MJ, Hughes TJR (2011) Isogeometric Analysis for topology optimization with a phase field model. Arch Comput Methods Eng 19:427–465MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidiscip Optim 21:120–127CrossRefGoogle Scholar
  9. 9.
    Bertsch C, Cisilino AP, Calvo N (2010) Topology optimization of three-dimensional load-bearing structures using boundary elements. Adv Eng Softw 41:694–704CrossRefzbMATHGoogle Scholar
  10. 10.
    Sigmund O, Clausen PM (2007) Topology optimization using a mixed formulation: an alternative way to solve pressure load problems. Comput Methods Appl Mech Eng 196:1874–1889MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, BerlinzbMATHGoogle Scholar
  12. 12.
    París J (2007) Restricciones en tensión y minimización del peso. Una metodología general para la optimización topológica. Universidade da Coruña, SpainGoogle Scholar
  13. 13.
    París J, Martínez S, Navarrina F, Colominas I, Casteleiro M (2010) Topology optimization of aeronautical structures with stress constraints: general methodology and applications. Universidade Da Coruña, SpainCrossRefzbMATHGoogle Scholar
  14. 14.
    Singh S, Ramakrishna S, Singh R (2016) Material issues in additive manufacturing: a review. J Manuf Process 25:185–200CrossRefGoogle Scholar
  15. 15.
    Vrancken B, Thijs L, Kruth J-P, Van Humbeeck J (2012) Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties. J Alloy Compd 541:177–185CrossRefGoogle Scholar
  16. 16.
    Jones R (2011) The design future. http://altairenlighten.com/2011/12/design-future-blog/. Accessed 14 Dec 2011
  17. 17.
    Tomlin M, Meyer J (2011) Topology optimization of an additive layer manufactured (ALM) aerospace part. In: The 7th altair CAE technology conference, pp 1–9Google Scholar
  18. 18.
    Machunze W, Lehmann T, Hein P (2013) Topology design of a metallic load introduction bracket manufactured by ALM. http://docslide.us/technology/topology-design-of-a-metallic-load-introduction-bracket-manufactured-by-alm.html. Accessed 23 Apr 2013
  19. 19.
    GE Aviation (2015) GE aviation’s first additive manufactured part takes off on a GE90 engine. http://www.geaviation.com/press-release/ge90-engine-family/ge-aviation%E2%80%99s-first-additive-manufactured-part-takes-ge90-engine. Accessed 14 Apr 2015
  20. 20.
    Merkt S (2013) DPP—optimization potentials by laser based manufacturing. Altair Conf 2013:6–13Google Scholar
  21. 21.
    Carello M, Airale A (2013) Design and building of the prototype IDRApegasus. http://es.slideshare.net/AltairHTC/design-and-building-of-the-prototype-idrapegasus. Accessed 9 May 2013
  22. 22.
    Laga R, González Requena I, Vilanova Calvo J (2013) Additive manufacturing. Trade-off de tecnologías, Universidad Politécnica de Madrid, SpainGoogle Scholar
  23. 23.
    Vanderplaats G (1973) Structural optimization by methods of feasible directions. Comput Struct 3:739–755CrossRefGoogle Scholar
  24. 24.
    Zoutendijk G (1960) Methods of feasible directions: a study in linear and non-linear programming. Elsevier, AmsterdamzbMATHGoogle Scholar
  25. 25.
    Additive Manufacturing Systems. http://www.renishaw.com/en/additive-manufacturing-systems--15239. Accessed 21 May 2014

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Laura Berrocal
    • 1
    Email author
  • Rosario Fernández
    • 1
  • Sergio González
    • 1
  • Antonio Periñán
    • 1
  • Santos Tudela
    • 1
  • Jorge Vilanova
    • 2
  • Luis Rubio
    • 3
  • Jose Manuel Martín Márquez
    • 4
  • Javier Guerrero
    • 3
  • Fernando Lasagni
    • 1
  1. 1.CATEC-Advanced Center for Aerospace TechnologiesSevilleSpain
  2. 2.Airbus Defence and Space—Space SystemsMadridSpain
  3. 3.Airbus Defence and Space—Centro Bahía de Cádiz (CBC)CádizSpain
  4. 4.Airbus Defence and Space—Tablada FactorySevilleSpain

Personalised recommendations