Progress in Additive Manufacturing

, Volume 4, Issue 1, pp 43–54 | Cite as

Investigation of LBM-processed bimodal powder mixtures of the nickel base alloy HX and WC–Co

  • Christopher Schaak
  • Stefan KleszczynskiEmail author
  • Wolgang Tillmann
  • Gerd Witt
Full Research Article


Laser beam melting (LBM) is an additive manufacturing technology (AM), which enables the production of individual, complex metal parts. The development of AM-specific materials is a necessary step to exploit the full technological potential and should be a useful contribution for the ongoing process of implementing, establishing, and realizing AM processes in industrial fields of application. Theoretically, the LBM process offers the opportunity to process any weldable metal powder feedstock. Since LBM parameters affect the solidification conditions directly, this process is predestinated for future material developments. In the present paper, first research results to process the conventional LBM powder (Hastelloy X; HX) that was blended with a fine WC–Co powder are presented. Due to its high temperature and corrosion resistance, HX is widely used in industrial AM applications. WC–Co was added to improve the wear and mechanical properties. In this study, the blended, bimodal powder feedstock was analyzed, and the influence of the key process parameters on the porosity, morphology, and grain structure was investigated. The aim was to obtain the first basic information concerning the behavior of such powder blends during LBM processing and the resulting material properties. In summary, processing powder blends is possible. Since an increased porosity was determined for a high WC–Co content, the process parameters need to be further improved. In addition, it was determined that the energy input during the powder melting process directly affects the distribution of WC–Co particles within the HX matrix. High-energy inputs lead to a degradation of the WC particles. Low-energy inputs foster a consistent embedding of WC–Co particles within the HX matrix.


Additive manufacturing Powder bed fusion (laser beam melting) Bimodal powder mixtures WC–Co and Hastelloy X (2.4665) 


Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. 1.
    Gibson I, Rosen DW, Stucker B (2010) Additive manufacturing technologies. Springer, Boston (978-1-4419-1119-3$4) CrossRefGoogle Scholar
  2. 2.
    Harrison M. Small innovative company growth: barriers, best practices and big ideas [online]. Lessons from the 3D printing industry. Accessed 6 July 2018
  3. 3.
    Lasagni F, Vilanova J, Periñán A, Zorrilla A, Tudela S, Gómez-Molinero V (2016) Getting confidence for flying additive manufactured hardware [online]. Prog Addit Manuf 1(3–4):129–139. CrossRefGoogle Scholar
  4. 4.
    Reiher T, Lindemann C, Jahnke U, Deppe G, Koch R (2017) Holistic approach for industrializing AM technology [online]. From part selection to test and verification. Prog Addit Manuf 21(2):216. Google Scholar
  5. 5.
    DIN Deutsches Institut für Normung e. V (2017) DIN EN ISO ASTM 52900—additive Fertigung. Grundlagen—Terminologie. Deutsche Fassung EN ISO/ASTM 52900Google Scholar
  6. 6.
    Rombouts M, Kruth JP, Froyen L, Mercelis P (2006) Fundamentals of selective laser melting of alloyed steel powders [online]. CIRP Ann Manuf Technol 55(1):187–192. CrossRefGoogle Scholar
  7. 7.
    Kruth J-P, Mercelis P, van Vaerenbergh J, Froyen L, Rombouts M (2005) Binding mechanisms in selective laser sintering and selective laser melting [online]. Rapid Prototyp J 11(1):26–36. CrossRefGoogle Scholar
  8. 8.
    Meiners W (1999) Direktes selektives Laser Sintern einkomponentiger metallischer Werkstoffe. RWTH Aachen, Dissertation. Als Ms. gedr. Aachen: Shaker, 1999. Berichte aus der Lasertechnik. 3826565711Google Scholar
  9. 9.
    Rickenbacher L, Etter T, Hövel S, Wegener K (2013) High temperature material properties of IN738LC processed by selective laser melting (SLM) technology [online]. Rapid Prototyp J 19(4):282–290. CrossRefGoogle Scholar
  10. 10.
    Spierings AB, Starr TL, Wegener K (2013) Fatigue performance of additive manufactured metallic parts [online]. Rapid Prototyp J 19(2):88–94. CrossRefGoogle Scholar
  11. 11.
    Stoffregen HA, Butterweck K, Abele E (2014) Analysis in selective laser melting: review and investigation of thin-walled actuator housings. In: Bourell et al. (ed) Proceedings of the 24th international solid freeform fabrication symposium, pp 635–650Google Scholar
  12. 12.
    Yasa E, Kempen K, Kruth JP, Thijs L, van Humbeeck J (2010) Microstructure and mechanical properties of maraging steel 300 after selective laser melting. In: Bourell et al. (ed) Proceedings of the 20th international solid freeform fabrication symposium, pp 383–396Google Scholar
  13. 13.
    Ashby K, Fieldman Z, Kenney P, Rockstroh T (2014) optimization of process parameters for reentrant surfaces in direct metal laser melting. In: Bourell et al. (ed) Proceedings of the 24th international solid freeform fabrication symposiumGoogle Scholar
  14. 14.
    Arasu IV, Chockalingam K, Kailasanathan C, Sivabharathy M (2014) Optimization of surface roughness in selective laser sintered stainless steel parts. Int J Chem Tech Res 6(5):2993–2999Google Scholar
  15. 15.
    Campanelli SL, Casalino G, Contuzzi N, Ludovico AD (2013) Taguchi optimization of the surface finish obtained by laser ablation on selective laser molten steel parts [online]. Procedia CIRP 12:462–467. CrossRefGoogle Scholar
  16. 16.
    Delfs P, Töws M, Schmid HJ (2015) Surface Roughness optimized aligment of parts for additive manufacturing processes. In: Bourell et al. (ed) Proceedings of the 25th international solid freeform fabrication symposium, pp 1334–1344Google Scholar
  17. 17.
    Fox JC, Moylan SP, Lane BM (2016) Effect of process parameters on the surface roughness of overhanging structures in laser powder bed fusion additive manufacturing [online]. Procedia CIRP 45:131–134. CrossRefGoogle Scholar
  18. 18.
    Grimm T, Wiora G, Witt G (2015) Characterization of typical surface effects in additive manufacturing with confocal microscopy [online]. Surf Topogr Metrol Prop 3(1):14001. CrossRefGoogle Scholar
  19. 19.
    Yadollahi A, Shamsaei N, Thompson SM, Elwany A, Bian L (2017) Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel [online]. Int J Fatigue 94:218–235. CrossRefGoogle Scholar
  20. 20.
    Niendorf T, Leuders S, Riemer A, Richard HA, Tröster T, Schwarze D (2013) Highly anisotropic steel processed by selective laser melting [online]. Metallurg Mater Trans B 44(4):794–796. CrossRefGoogle Scholar
  21. 21.
    Ahuja B, Schaub A, Junker D, Karg M, Tenner F, Plettke R, Merklein M, Schmidt M (2016) A round Robin study for laser beam melting in metal powder bed [online]. S Afr J Ind Eng. Google Scholar
  22. 22.
    Craeghs T, Clijsters S, Kruth JP, Bechmann F, Ebert MC (2012) Detection of process failures in layerwise laser melting with optical process monitoring [online]. Phys Procedia 39:753–759. CrossRefGoogle Scholar
  23. 23.
    Fulcher B, Leigh DK (2013) Metals additive manufacturing developement at Harvest Technologies. In: Bourell et al. (ed) Proceedings of the 23rd international solid freeform fabrication symposium, pp 408–423Google Scholar
  24. 24.
    Wagner C (2003) Untersuchungen zum Selektiven Lasersintern von Metallen. Berichte aus der Produktionstechnik: Shaker Verlag 3-8322-1538-7Google Scholar
  25. 25.
    Kruth J-P, Levy G, Klocke F, Childs THC (2007) Consolidation phenomena in laser and powder-bed based layered manufacturing [online]. CIRP Ann Manuf Technol 56(2):730–759. CrossRefGoogle Scholar
  26. 26.
    Vrancken B, Wauthle R, Kruth J-P, van Humbeeck J (2013) Study on the influence of material properties on residual stress in selective laser melting. In: Bourell et al. (ed) Proceedings of the 23rd international solid freeform fabrication symposium, pp 393–407Google Scholar
  27. 27.
    Gürtler F-J, Karg M, Dobler M, Kohl S, Tzivilsky I, Schmidt M (2014) Influence of powder distribution on process stability in laser beam melting: analysis of melt pool dynamics by numerical simulations. In: Bourell et al. (ed) Proceedings of the 24th international solid freeform fabrication symposium, pp 1099–1117Google Scholar
  28. 28.
    Spierings AB, Wegener K, Levy G (2012) Designing material properties locally with additive manufacturing technology SLM. In: Bourell et al. (ed) Proceedings of the 22nd international Solid freeform fabrication symposium, pp 447–455Google Scholar
  29. 29.
    Tomus D, Jarvis T, Wu X, Mei J, Rometsch P, Herny E, Rideau J-F, Vaillant S (2013) Controlling the microstructure of Hastelloy-X components manufactured by selective laser melting [online]. Phys Procedia 41:823–827. CrossRefGoogle Scholar
  30. 30.
    Spierings AB, Dawson K, Heeling T, Uggowitzer PJ, Schäublin R, Palm F, Wegener K (2017) Microstructural features of Sc- and Zr-modified Al–Mg alloys processed by selective laser melting [online]. Mater Des 115:52–63. CrossRefGoogle Scholar
  31. 31.
    Schmidtke K, Palm F, Hawkins A, Emmelmann C (2011) Process and mechanical properties [online]. Applicability of a scandium modified Al-alloy for laser additive manufacturing. Phys Procedia 12:369–374. CrossRefGoogle Scholar
  32. 32.
    Zhou Y, Wen SF, Song B, Zhou X, Teng Q, Wei QS, Shi YS (2016) A novel titanium alloy manufactured by selective laser melting [online]. Microstructure, high temperature oxidation resistance. Mater Des 89:1199–1204. CrossRefGoogle Scholar
  33. 33.
    Voit C, Huskic A, Zeljka S (2011) Untersuchung der Eignung von Metall-Keramikpulvermischungen für generativ gefertigte Werkzeuge. RTejournal (8)Google Scholar
  34. 34.
    Chang F, Gu D, Dai D, Yuan P (2015) Selective laser melting of in-situ Al4SiC4 + SiC hybrid reinforced Al matrix composites [online]. Influence of starting SiC particle size. Surf Coat Technol 272:15–24. CrossRefGoogle Scholar
  35. 35.
    Song B, Dong S, Coddet C (2014) Rapid in situ fabrication of Fe/SiC bulk nanocomposites by selective laser melting directly from a mixed powder of microsized Fe and SiC [online]. Scr Mater 75:90–93. CrossRefGoogle Scholar
  36. 36.
    Dai D, Gu D (2015) Tailoring surface quality through mass and momentum transfer modeling using a volume of fluid method in selective laser melting of TiC/AlSi10Mg powder [online]. Int J Mach Tools Manuf 88:95–107. CrossRefGoogle Scholar
  37. 37.
    Gu D, Hagedorn Y-C, Meiners W, Wissenbach K, Poprawe R (2011) Nanocrystalline TiC reinforced Ti matrix bulk-form nanocomposites by selective laser melting (SLM) [online]. Densification, growth mechanism and wear behavior. Compos Sci Technol 71(13):1612–1620. CrossRefGoogle Scholar
  38. 38.
    Gu D, Meng G, Li C, Meiners W, Poprawe R (2012) Selective laser melting of TiC/Ti bulk nanocomposites [online]. Influence of nanoscale reinforcement. Scr Mater 67(2):185–188. CrossRefGoogle Scholar
  39. 39.
    Gu D, Wang H, Chang F, Dai D, Yuan P, Hagedorn Y-C, Meiners W (2014) Selective laser melting additive manufacturing of TiC/AlSi10Mg bulk-form nanocomposites with tailored microstructures and properties [online]. Phys Procedia 56:108–116. CrossRefGoogle Scholar
  40. 40.
    Gu D, Wang Z, Shen Y, Li Q, Li Y (2009) In-situ TiC particle reinforced Ti–Al matrix composites [online]. Powder preparation by mechanical alloying and selective laser melting behavior. Appl Surf Sci 255(22):9230–9240. CrossRefGoogle Scholar
  41. 41.
    Hong C, Gu D, Dai D, Alkhayat M, Urban W, Yuan P, Cao S, Gasser A, Weisheit A, Kelbassa I, Zhong M, Poprawe R (2015) Laser additive manufacturing of ultrafine TiC particle reinforced Inconel 625 based composite parts [online]. Tailored microstructures and enhanced performance. Mater Sci Eng A 635:118–128. CrossRefGoogle Scholar
  42. 42.
    Gu D, Meiners W (2010) Microstructure characteristics and formation mechanisms of in situ WC cemented carbide based hardmetals prepared by selective laser melting [online]. Mater Sci Eng A 527(29–30):7585–7592. CrossRefGoogle Scholar
  43. 43.
    Gu D, Zhang G, Dai D, Wang H, Shen Y (2013) Nanocrystalline tungsten–nickel heavy alloy reinforced by in-situ tungsten carbide [online]. Mechanical alloying preparation and microstructural evolution. Int J Refract Metals Hard Mater 37:45–51. CrossRefGoogle Scholar
  44. 44.
    Gu D, Shen Y (2009) Effects of processing parameters on consolidation and microstructure of W–Cu components by DMLS [online]. J Alloys Compd 473(1–2):107–115. CrossRefGoogle Scholar
  45. 45.
    Fischer M, Joguet D, Robin G, Peltier L, Laheurte P (2016) In situ elaboration of a binary Ti-26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders [online]. Mater Sci Eng C Mater Biol Appl 62:852–859. CrossRefGoogle Scholar
  46. 46.
    Wilkes J, Hagedorn Y-C, Meiners W, Wissenbach K (2013) Additive manufacturing of ZrO2–Al2O3 ceramic components by selective laser melting [online]. Rapid Prototyp J 19(1):51–57. CrossRefGoogle Scholar
  47. 47.
    Sehrt JT, Kleszczynski S, Notthoff C, Lau M, Göcke B, Barcikowski S (2016) Laser powder bed fusion of nano-WC-modified and nano-TiO2-modified metal powders. In: Drstvensek I, Drummer D, Schmidt M (eds) Proceedings of 6th international conference on additive technologies—iCAT. Ljubljana: Interesana, pp 26–38Google Scholar
  48. 48.
    Kleszczynski S, Zur Jacobsmühlen J, Sehrt J, Witt G (2012) Error detection in laser beam melting systems by high resolution imaging. In: Bourell et al. (ed) Proceedings of the 22nd international solid freeform fabrication symposiumGoogle Scholar
  49. 49.
    Zur Jacobsmühlen J, Kleszczynski S, Witt G, Merhof D (2015) Elevated region area measurement for quantitative analysis of laser beam melting process stability. In: Bourell et al. (ed) Proceedings of the 25th international solid freeform fabrication symposium, pp 549–559Google Scholar
  50. 50.
    Zur Jacobsmühlen J, Kleszczynski S, Witt G, Merhof D (2015) Detection of elevated regions in surface images from laser beam melting processes. 41st Annual conference of the IEEE Industrial Electronics SocietyGoogle Scholar
  51. 51.
    Bourell D, Kruth JP, Leu M, Levy G, Rosen D, Beese AM, Clare A (2017) Materials for additive manufacturing [online]. CIRP Ann Manuf Technol. Google Scholar
  52. 52.
    Yang Q, Senda A, Ohmori A (2003) Effect of carbide grain size on microstructure and sliding wear behavior of HVOF-sürayed WC-12% Co coatings. Wear 254:23–34CrossRefGoogle Scholar
  53. 53.
    Stewart DA, Shipway PH, McCartney DG (1999) Abrasive wear behaviour of conventional and nanocomposite HVOF-sprayed WC–Co coatings. Wear. 225–229:789–798CrossRefGoogle Scholar
  54. 54.
    Guilemany JM, Dosta S, Nin J, Miguel JR (2005) Study of WC–Co nanostructured coatings sprayed by high-velocity oxyfuel. J Therm Spray Technol 14:405–413CrossRefGoogle Scholar
  55. 55.
    Do Nascimento A, Ocelik V, Ieradi M, Hosson J de (2008) Microstructure of reaction zone in WC p/duplex stainless steel matrix composites processing by laser melt injection. Surf Coat Technol 202:2113–2120CrossRefGoogle Scholar
  56. 56.
    Li R, Liu J, Shi Y, Wang L, Jiang W (2012) Balling behavior of stainless steel and nickel powder during selective laser melting process [online]. Int J Adv Manuf Technol 59(9–12):1025–1035. CrossRefGoogle Scholar
  57. 57.
    Zhou X, Liu X, Zhang D, Shen Z, Liu W (2015) Balling phenomena in selective laser melted tungsten [online]. J Mater Process Technol 222:33–42. CrossRefGoogle Scholar
  58. 58.
    (2016) N.N.. VDI Guideline 3405-2.2 Additive Fertigungsverfahren, Laser-Strahlschmelzen metallischer bauteile, Materialdatenblatt Nickellegierung, Werkstoffnummer 2.4668, Beuth Publishing CompanyGoogle Scholar
  59. 59.
    Wright P, Trent EM (2010) Metal cutting, 4th ed (ISBN 9780080511450) Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Product EngineeringUniversity of Duisburg-EssenDuisburgGermany
  2. 2.Institute for Materials EngineeringTU Dortmund UniversityDortmundGermany

Personalised recommendations