Microstructural Changes and Quality Improvement of Al7Si0.2Mg (356) Alloy by Die Vibration

  • Meet C. Mehta
  • Durbadal Mandal
  • Sujoy K. ChaudhuryEmail author


The influence of amplitude and frequency of die vibration during solidification on microstructural evolution of Al–7Si–0.2Mg (356, LM-25) alloy was studied. The amplitude of die vibration was varied from 0.0 to 1.05 mm at 50 Hz frequency, and the frequency was changed from 30 to 50 Hz at a amplitude of 0.75 mm. Structural examination and quality of the casting were evaluated in terms of porosity at various processing conditions. Vibration modified and refined structure during gravity die casting of the alloy. Macrostructure of casting prepared in vibrating die consisted of fine equiaxed grains. In contrast, macrostructure of casting produced in stationary die typically consisted of columnar grains at the periphery and equiaxed grains at the center. Die vibration resulted in microstructure of mixed type comprising of globular and dendritic primary α-Al with interdendritic eutectic Si particles. On the contrary, microstructure of casting produced in stationary die consisted of dendritic α-Al structure and eutectic Si particles. In addition, die vibration reduced secondary dendritic arms spacing (SDAS) to 18.98 μm from 34.38 μm obtained without vibration. Since SDAS is a measure of cooling rate, its reduction due to die vibration implies an increase in cooling rate of casting. This is attributed to the forced convection effect generated by die vibration. Consequently, the higher cooling rate owing to the die vibration reduced microsegregation of Si and Mg in the casting. Further, structural modification and refinement due to die vibration improved the quality of casting significantly in terms of porosity.


Al–Si–Mg alloy vibration gravity die casting microstructure shrinkage porosity 



  1. 1.
    J.G. Kaufman, E.L. Rooy, Aluminum Alloy Castings: Properties, Processes, and Applications (ASM International, Materials Park, 2004)Google Scholar
  2. 2.
    W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P.D. Smet, A. Haszler, A.I. Vieregge, Mater. Sci. Eng. A 280, 37 (2000)CrossRefGoogle Scholar
  3. 3.
    D.R. Gunasegaram, D.J. Farnsworth, T.T. Nguyen, J. Mater. Process. Technol. 209, 1209 (2009)CrossRefGoogle Scholar
  4. 4.
    T. Triyono, N. Muhayat, A. Supriyanto, L. Lutiyatmi, Arch. Foundry Eng. 17, 227 (2017)CrossRefGoogle Scholar
  5. 5.
    M. Mostafaei, M. Ghobadi, E.B. Ghasem, M. Uludag, M. Tiryakioglu, Metall. Mater. Trans. 47B, 3469 (2016)CrossRefGoogle Scholar
  6. 6.
    M. Javidani, D. Larouche, Int. Mater. Rev. 59, 132 (2014)CrossRefGoogle Scholar
  7. 7.
    M. Di Sabatino, L. Arnberg, Trans. Indian Inst. Metals 62, 321 (2009)CrossRefGoogle Scholar
  8. 8.
    F. Stadler, H. Antrekowitsch, W. Fragner, H. Kaufmann, E.R. Pinatel, P.J. Uggowitzer, Mater. Sci. Eng. A 560, 481 (2013)CrossRefGoogle Scholar
  9. 9.
    N. Roy, A. Samuel, F. Samuel, Metall. Trans. A 27, 415 (1996)CrossRefGoogle Scholar
  10. 10.
    J.F. Major, AFS Trans. 105, 901 (1997)Google Scholar
  11. 11.
    S.B. Kim, Y.H. Cho, J.G. Jung, W.H. Yoon, Y.K. Lee, J.M. Lee, Metals Mater. Int. 24, 1376 (2018)CrossRefGoogle Scholar
  12. 12.
    W. Khalifa, Y. Tsunekawa, M. Okumiya, Int. J. Cast Metals Res. 21, 129 (2008)CrossRefGoogle Scholar
  13. 13.
    Y. Mizutani, S. Kawai, K. Miwa, K. Yasue, T. Tamura, Mater. Trans. 45, 1939 (2004)CrossRefGoogle Scholar
  14. 14.
    J. Dong, J. Cui, X. Zeng, W. Ding, Mater. Lett. 59, 1502 (2005)CrossRefGoogle Scholar
  15. 15.
    K. Girija, I. Satyanarayana, Int. J. Adv. Res. Manag. Archit. Technol. Eng. 1, 21 (2015)Google Scholar
  16. 16.
    S. Kumar, S.P. Tewari, Sadhana 41, 1203 (2016)CrossRefGoogle Scholar
  17. 17.
    S. Kumar, S.P. Tewari, Inter Metalcast 12, 28 (2018). CrossRefGoogle Scholar
  18. 18.
    P.N. Anyalebechi, Inter Foundry Res. 63, 32 (2011)Google Scholar
  19. 19.
    M.C. Mehta, D. Mandal, S.K. Chaudhury, Inter Metalcast 13, 438 (2019). CrossRefGoogle Scholar
  20. 20.
    J. Campbell, Advances in the Science and Engineering of Casting Solidification (Springer, Cham, 2015), p. 357CrossRefGoogle Scholar
  21. 21.
    J. Deshpande, M.M. Makhlouf, AFS Trans. 116, 1–18 (2008)Google Scholar
  22. 22.
    ASTM Standard E3-11, vol. 03.01 (ASTM International, West Conshohocken, PA, 2017)Google Scholar
  23. 23.
    T. Tamura, T. Matsuki, K. Miwa, Light Metals (2011), p. 827Google Scholar
  24. 24.
    Y. Yoshitake, K. Yamamoto, N. Sasaguri, H. Era, Inter Metalcast 13, 553 (2019). CrossRefGoogle Scholar
  25. 25.
    C. Allen, Q. Han, Inter Metalcast 5, 69 (2011). CrossRefGoogle Scholar
  26. 26.
    L.Y. Pio, S. Sulaiman, A.M. Hamouda, M.M.H.M. Ahmad, J. Mater. Process. Technol. 162–163, 435 (2005)CrossRefGoogle Scholar
  27. 27.
    A. Claro, J. Conrads, J. Fava, R.A. Flinn, AFS Trans. 78, 324 (1970)Google Scholar
  28. 28.
    M.A. Suarez, I. Figueroa, A. Cruz, A. Hernandez, J.F. Chavez, Mater. Res. 15, 763 (2012)CrossRefGoogle Scholar
  29. 29.
    T. Timelli, E.D. Corte, F. Bonollo, Mater. Sci. Forum 678, 105 (2011)CrossRefGoogle Scholar
  30. 30.
    A.B. Michael, M.B. Bever, J. Metals 6, 47 (1954)Google Scholar
  31. 31.
    L. Pedersen, L. Arnberg, Mater. Sci. Eng. A 241, 285 (1998)CrossRefGoogle Scholar
  32. 32.
    A.R. Valizadeh, A.R. Kiani-Rashid, M.H. Avazkonandeh-Gharoval, E.Z. Karimi, Metallogr. Microstruct. Anal. 2, 107 (2013)CrossRefGoogle Scholar
  33. 33.
    D.M. Levine, D.F. Stephan, T.C. Krehbiel, M.L. Berenson, Statistics for Managers Using Microsoft ®Excel (Prentice Hall, Upper Saddle River, 2008)Google Scholar
  34. 34.
    W. Chen, S. Wu, R. Wang, Inter Metalcast 13, 969 (2019). CrossRefGoogle Scholar

Copyright information

© American Foundry Society 2020

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringIndus UniversityRancharda, AhmedabadIndia
  2. 2.Department of Metallurgical and Materials EngineeringNational Institute of TechnologyDurgapurIndia

Personalised recommendations