Advertisement

Interface Formation and Characterization of Brass/Aluminum Compounds Fabricated Through Die Casting and Semi-Continuous Casting

  • Thomas GreßEmail author
  • Vanessa Glück Nardi
  • Tim Mittler
  • Simon Schmid
  • Paul Buchberger
  • Babette Tonn
  • Wolfram Volk
Article
  • 32 Downloads

Abstract

An innovative method based on the static and semi-continuous casting technology is investigated for the production of bilayer brass/aluminum billets and rods. The paper focuses on the interface formation and characterization of metallurgically bonded hybrids consisting of brass CuZn37 and the aluminum alloys AA5083, AA6060 and AA7075. Depending on the thermal process conditions, the interfacial reaction zone between the joining partners exhibits a thickness between a few micrometers and a few millimeters. Regardless of the usage of disparate aluminum alloys, the interface of as-cast brass/aluminum compounds is characterized by four intermetallic layers, namely CuZn \((\hbox {CuZn-}\upbeta )\), \(\hbox {Al}_3\hbox {Cu}_5\hbox {Zn}_2\), \(\hbox {Al}_4\hbox {Cu}_3\hbox {Zn}\) and AlCu \((\hbox {AlCu-}\upeta _2)\), as well as an anomalous eutectic area of aluminum solid solution \((\upalpha \hbox {-Al})\), \(\hbox {Al}_2\hbox {Cu}\)\((\hbox {AlCu-}\uptheta )\) and eutectic structures. The intermetallic layers are primarily formed by solid-state diffusion, whereas the anomalous eutectic zone is a result of dissolution of Cu in liquid Al and subsequent solidification and precipitation. The microhardness, elastomechanical properties and the bonding strength of the interfacial area of as-cast compounds are determined using the nanoindentation and push-out testing technique. Due to the high cooling rates, brass/aluminum compounds fabricated through semi-continuous casting are characterized by a sufficient geometrical stability of the interface and high bonding quality.

Keywords

compound casting brass aluminum intermetallic phases continuous casting cohesion 

Notes

Acknowledgements

This work was supported by the German Research Foundation (DFG) [Grant Number VO-1487/41-1]. The authors acknowledge the financial fundings from the DFG.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    M. Pintore, J. Wölck, T. Mittler, T. Greß, B. Tonn, W. Volk, Int. J. Metalcasting, pp. 1–12 (2019).  https://doi.org/10.1007/s40962-019-00344-x
  2. 2.
    K.Y. Rhee, W.Y. Han, H.J. Park, S.S. Kim, Mater. Sci. Eng. A 384, 70–76 (2004).  https://doi.org/10.1016/j.msea.2004.05.051 CrossRefGoogle Scholar
  3. 3.
    M. Akbarifar, M. Divandari, Int. J. Metalcasting 11, 506–512 (2017).  https://doi.org/10.1007/s40962-016-0101-z CrossRefGoogle Scholar
  4. 4.
    C.-Y. Chen, H.-L. Chen, W.-S. Hwang, Mater. Trans. 47, 1232–1239 (2006).  https://doi.org/10.2320/matertrans.47.1232 CrossRefGoogle Scholar
  5. 5.
    W.-B. Lee, K.-S. Bank, S.-B. Jung, J. Alloys Compd. 390, 212–219 (2005).  https://doi.org/10.1016/j.jallcom.2004.07.057 CrossRefGoogle Scholar
  6. 6.
    X.G. Wang, F.J. Yan, X.G. Li, C.G. Wang, Sci. Technol. Weld. Join. 22, 170–175 (2017).  https://doi.org/10.1080/13621718.2016.1209625 CrossRefGoogle Scholar
  7. 7.
    G.R. Zare, M. Divandari, H. Arabi, Mater. Sci. Technol. 29, 190–196 (2013).  https://doi.org/10.1179/1743284712Y.0000000096 CrossRefGoogle Scholar
  8. 8.
    T. Greß, J. Stahl, T. Mittler, L. Spano, H. Chen, N. Ben Khalifa, W. Volk, Mater. Sci. Eng. A 751, pp. 214–225 (2019).  https://doi.org/10.1016/j.msea.2019.02.080 CrossRefGoogle Scholar
  9. 9.
    T. Mittler, T. Greß, M. Feistle, M. Krinninger, U. Hofmann, J. Riedle, R. Golle, W. Volk, J. Mater. Process. Technol. 263, 33–41 (2019).  https://doi.org/10.1080/02670836.2018.1479946 CrossRefGoogle Scholar
  10. 10.
    J.-T. Luo, S.-J. Zhao, C.-X. Zhang, J. Cent, South Univ. Technol. 18, 1013–1017 (2011)CrossRefGoogle Scholar
  11. 11.
    J.-T. Luo, S.-J. Zhao, C.-X. Zhang, J. Cent, South Univ. Technol. 19, 882–886 (2012).  https://doi.org/10.1007/s11771-012-1087-1 CrossRefGoogle Scholar
  12. 12.
    Y. Fu, Y.-B. Zhang, J.-C. Jie, K. Svynarenko, C.-H. Liang, T.-J. Li, China Foundry 14, 194–198 (2017).  https://doi.org/10.1007/s41230-017-6057-7 CrossRefGoogle Scholar
  13. 13.
    M. Gholami, M. Divandari, Iran. J. Mater. Sci. Eng. 15, 52–61 (2018).  https://doi.org/10.22068/ijmse.15.4.52 CrossRefGoogle Scholar
  14. 14.
    J. Xie, C. Wu, X. Liu, X. Liu, Mater. Sci. Forum 539–543, 956–961 (2007).  https://doi.org/10.4028/www.scientific.net/MSF.539-543.956 CrossRefGoogle Scholar
  15. 15.
    Y.-J. Su, X.-H. Liu, H.-Y. Huang, C.-J. Wu, X.-F. Liu, J.-X. Xie, Metall. Mater. Trans. B 42B, 104–113 (2011).  https://doi.org/10.1007/s11663-010-9449-2 CrossRefGoogle Scholar
  16. 16.
    A. Ißleib, A. Friedel, I. Lubojanski, Gießerei-Praxis 23(24), 442–447 (1995)Google Scholar
  17. 17.
    T. Greß, T. Mittler, S. Schmid, H. Chen, N. Ben Khalifa, W. Volk, Int. J. Metalcasting, (2018).  https://doi.org/10.1007/s40962-018-0282-8 CrossRefGoogle Scholar
  18. 18.
    Z. Xue, H. Liang, W. Yu, C. Wu, China Foundry 10, 385–390 (2013)Google Scholar
  19. 19.
    O. Starykov, J. Wölck, M. Pintore, B. Tonn, W. Volk, in Proc. 6th Decenn. Int. Conference Solidif. Process., pp. 1–4 (2017)Google Scholar
  20. 20.
    M. Pintore, O. Starykov, T. Mittler, W. Volk, B. Tonn, Int. J. Metalcasting 12, 79–88 (2018).  https://doi.org/10.1007/s40962-017-0140-0 CrossRefGoogle Scholar
  21. 21.
    S. Liu, A. Wang, H. Tian, J. Xie, Mater. Res. Express 6, 1–9 (2019).  https://doi.org/10.1088/2053-1591/aae630 CrossRefGoogle Scholar
  22. 22.
    H. Liang, Z. Xue, C. Wu, Q. Liu, Y. Wu, Acta Metallurgica Sinica (Engl. Lett.) 23, pp. 206–214 (2010).  https://doi.org/10.11890/1006-7191-103-206
  23. 23.
    Y.-J. Su, X.-H. Liu, H.-Y. Huang, X.-F. Liu, J.-X. Xie, Metall. Mater. Trans. A 42A, 4088–4099 (2011).  https://doi.org/10.1007/s11661-011-0785-x CrossRefGoogle Scholar
  24. 24.
    C.M. Li, S.M. Zeng, Z.Y. Chen, N.P. Cheng, T.X. Chen, Computational. Mater. Sci. 93, 210–220 (2014).  https://doi.org/10.1016/j.commatsci.2014.06.031 CrossRefGoogle Scholar
  25. 25.
    J. Zhang, Y.N. Huang, C. Mao, P. Peng, Sol. State Commun. 152, 2100–2104 (2012).  https://doi.org/10.1016/j.ssc.2012.09.003 CrossRefGoogle Scholar
  26. 26.
    W. Zhou, L. Liu, B. Li, Q. Song, P. Wu, J. Electron. Mater. 38, 356–364 (2009).  https://doi.org/10.1007/s11664-008-0587-0 CrossRefGoogle Scholar
  27. 27.
    W. Matertienssen, H. Warlimont, Springer Handbook of Condensed Matter and Materials Data (Springer-Verlag, Berlin, Heidelberg, 2005)CrossRefGoogle Scholar
  28. 28.
    C. Feng, B.S. Kang, Exp. Mech. 48, 9–15 (2008).  https://doi.org/10.1007/s11340-007-9074-4 CrossRefGoogle Scholar
  29. 29.
    C. Dahnke, A. Reeb, F. Pottmeyer, K.A. Weidenmann, A.E. Tekkaya, Smart Mater. Struct. 28, 1–15 (2019).  https://doi.org/10.1088/1361-665X/ab0ef5 CrossRefGoogle Scholar
  30. 30.
    ISO 14577-1: Metallic materials—Instrumented indentation test for hardness and materials parameters - Par 1: Test method. (2015)Google Scholar
  31. 31.
    W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564–1583 (1992).  https://doi.org/10.1557/JMR.1992.1564 CrossRefGoogle Scholar
  32. 32.
    T. Greß, T. Mittler, W. Volk, Mater. Sci. Technol. (2018).  https://doi.org/10.1080/02670836.2018.1479946
  33. 33.
    X.-G. Fan, D.-M. Jiang, Q.-C. Meng, B.-Y. Zhang, T. Wang, Trans. Nonferr. Metals Soc. China 16, 577–581 (2006).  https://doi.org/10.1016/S1003-6326(06)60101-5 CrossRefGoogle Scholar
  34. 34.
    M. Godec, B. Podgornik, D. Nolan, Sci. Rep. 7, 1–7 (2017).  https://doi.org/10.1038/s41598-017-15847-y CrossRefGoogle Scholar
  35. 35.
    R. Li, Z. Wang, Z. Guo, P.K. Liaw, T. Zhang, L. Li, Y. Zhang, Sci. China Mater. 62, 736–744 (2019).  https://doi.org/10.1007/s40843-018-9365-8 CrossRefGoogle Scholar
  36. 36.
    G. Ghosh, J. van Humbeeck, P. Perrot, in Ternary Alloys: A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams 5, ed. by G. Petzow, G. Effenberg (VCH, Weinheim, 1992), pp. 92–112Google Scholar
  37. 37.
    H. Yi, L. Qi, J. Luo, Y. Guo, S. Li, N. Li, Mater. Lett. 216, 232–235 (2018).  https://doi.org/10.1016/j.matlet.2018.01.127 CrossRefGoogle Scholar
  38. 38.
    Q. Li, Y. Zhu, J. Guo, J. Mater. Process. Technol. 249, 538–548 (2017).  https://doi.org/10.1016/j.jmatprotec.2017.07.001 CrossRefGoogle Scholar
  39. 39.
    A.A. Kodentsov, G.F. Bastin, F.J.J. van Loo, Methods for Ph. Diagr. Determ. (2007).  https://doi.org/10.1016/B978-008044629-5/50006-9 CrossRefGoogle Scholar
  40. 40.
    A. Mostafa, M. Medraj, Metals 4, 168–195 (2014).  https://doi.org/10.3390/met4020168 CrossRefGoogle Scholar
  41. 41.
    S.-M. Liang, R. Schmid-Fetzer, Calphad 52, 21–37 (2016).  https://doi.org/10.1016/j.calphad.2015.11.001 CrossRefGoogle Scholar

Copyright information

© American Foundry Society 2019

Authors and Affiliations

  1. 1.Chair of Metal Forming and CastingTechnical University of MunichGarchingGermany
  2. 2.Institute of MetallurgyClausthal University of TechnologyClausthal-ZellerfeldGermany

Personalised recommendations