Advertisement

Effect of QPQ Nitriding Parameters on Properties of Pearlite Ductile Cast Iron

  • Yongjian Liu
  • Yufu Sun
  • Weilin Zhang
  • Xueshan DuEmail author
Article
  • 35 Downloads

Abstract

The effects of nitriding temperature and time on properties of pearlite ductile cast iron were studied by wear and corrosion resistance tests. The results show that the main phases of oxide layer are Fe3O4 and Li2Fe3O4, and the main phases of compound layer are Fe3N and Fe4N. With the increase of nitriding temperature, the micro-hardness and wear resistance increase first and then decrease. The micro-hardness and wear resistance increase continuously with the prolongation of nitriding time. The corrosion resistance of the sample is relatively good when nitriding at 640 °C for 120 min.

Keywords

pearlite ductile cast iron Quench–Polish–Quench micro-hardness wear resistance corrosion resistance 

Notes

Acknowledgements

This work was supported by the Science and Technology Research Project of Henan Province [Grant Number 172102210009], China. The authors gratefully acknowledge the other researchers of School of Materials Science and Engineering of Zhengzhou University of Henan Province in china for their assistance of this work.

References

  1. 1.
    Y.J. Li, S.Y. Dong, S.X. Yan, X.T. Liu, P. He, B.S. Xu, Microstructure evolution during laser cladding Fe-Cr alloy coatings on ductile cast iron. Opt. Laser. Techn. 108, 255–264 (2018)CrossRefGoogle Scholar
  2. 2.
    T. Deguchi, H.J. Kim, T. Ikeda, K. Yanase, Influence of mean stress on fatigue strength of ferritic-pearlite ductile cast iron with small defects. J. Phys: Conf. Ser. 843, 012049 (2017)Google Scholar
  3. 3.
    J. Pina, A. Dias, M. Francois, J.L. Lebrun, Residual stresses and crystallographic texture in hard-chromium electroplated coatings. Surf. Coat. Technol. 96(2–3), 148–162 (1997)CrossRefGoogle Scholar
  4. 4.
    B. Barnett, M. Trexler, V. Champagne, Cold sprayed refractory metals for chrome reduction in gun barrel liners. Int. J. Refract. Met. H. 53, 139–143 (2015)CrossRefGoogle Scholar
  5. 5.
    D.M. Mattox, Physical vapor deposition (PVD) processes. Met. Finish. 100(Suppl 1), 394–408 (2002)CrossRefGoogle Scholar
  6. 6.
    W.S. De Rosset, J.S. Montgomery, Cobalt-base alloy gun barrel study. Wear 316(1–2), 119–123 (2014)CrossRefGoogle Scholar
  7. 7.
    G.J. Li, Q. Peng, J. Wang, C. Li, Y. Wang, J. Gao, S.Y. Chen, B.L. Shen, Surface microstructure of 316L austenitic stainless steel by the salt bath nitrocarburizing and post-oxidation process known as QPQ. Surf. Coat. Technol. 202(13), 2865–2870 (2008)CrossRefGoogle Scholar
  8. 8.
    H.Y. Li, D.F. Luo, C.F. Yeung, K.H. Lau, Microstructural studies of QPQ complex salt bath heat-treated steels. J. Mater. Process. Technol. 69(1–3), 45–49 (1997)CrossRefGoogle Scholar
  9. 9.
    C.F. Yeung, K.H. Lau, H.Y. Li, D.F. Luo, Advanced QPQ complex salt bath heat treatment. J. Mater. Process. Technol. 66(1), 249–252 (1997)CrossRefGoogle Scholar
  10. 10.
    H. Kunst. Improving corrosion and wear resistance by salt bath nitrocarburizing plus oxidizing in automated facilities. Adv. Surf. Treat. 451–467 (1987)Google Scholar
  11. 11.
    W. Cai, F. Meng, X. Gao, J. Hu, Effect of QPQ nitriding time on wear and corrosion behavior of 45 carbon steel. Appl. Surf. Sci. 261(22), 411–414 (2012)CrossRefGoogle Scholar
  12. 12.
    K. Funatani, Low-Temperature Salt Bath Nitriding of Steels. Met. Sci. Heat Treat. 46(7–8), 277–281 (2004)CrossRefGoogle Scholar
  13. 13.
    G.J. Li, J. Wang, Q. Peng, C. Li, Y. Wang, B.L. Shen, Influence of salt bath nitrocarburizing and post-oxidation process on surface microstructure evolution of 17-4PH stainless steel. J. Mater. Process. Technol. 207(1–3), 187–192 (2008)CrossRefGoogle Scholar
  14. 14.
    J. Wang, Y.H. Lin, J. Yan, D.Z. Zen, Q. Zhang, R.B. Huang, H.Y. Fan, Influence of time on the microstructure of AISI 321 austenitic stainless steel in salt bath nitriding. Surf. Coat. Technol. 206(15), 3399–3404 (2012)CrossRefGoogle Scholar
  15. 15.
    J. Wang, Y.H. Lin, J. Yan, D.Z. Zen, R.B. Huang, Z.J. Hu, Modification of AISI, 304 stainless steel surface by the low temperature complex salt bath nitriding at 430°C. ISIJ Int. 52, 1118–1123 (2012)CrossRefGoogle Scholar
  16. 16.
    L. Bellas, G. Castro, L. Mera, J.L. Mier, A. García, A. Varela, Effect of carbonitriding in a salt bath by a QPQ scheme on stainless steel 321 microstructure and service properties. Met. Sci. Heat Treat. 58(5–6), 1–7 (2016)Google Scholar
  17. 17.
    G.Y. Xiong, M.J. Zhao, L.Z. Zhao, J. Zhang, Influence of rare earth on the properties of H13 steel by the QPQ salt-bath treatment. Adv. Mater. Res. 97–101, 1454–1458 (2010)CrossRefGoogle Scholar
  18. 18.
    L. Zhang, C. Ren, Q. Yu, J. Zhang, S.Q. Sun, Q.S. Ren, Y. Lian, X.L. Chen, W. Gao, Microstructure and properties of 1Cr12Ni2WMoVNb (GX-8) steel bored barrels with and without QPQ treatment. Surf. Coat. Technol. 315, 95–104 (2017)CrossRefGoogle Scholar
  19. 19.
    G.J. Li, Q. Peng, C. Li, Y. Wang, J. Gao, S.Y. Chen, J. Wang, B.L. Shen, Microstructure analysis of 304L austenitic stainless steel by QPQ complex salt bath treatment. Mater. Charact. 59(9), 1359–1363 (2008)CrossRefGoogle Scholar
  20. 20.
    J. Yan, J. Wang, Y. Lin, T. Gu, D.Z. Zeng, R.B. Huang, X. Ji, H.Y. Fan, Microstructure and properties of SAE 2205 stainless steel after salt bath nitrocarburizing at 450 C. J. Mater. Eng. Perform. 23(4), 1157–1164 (2014)CrossRefGoogle Scholar
  21. 21.
    J. Wang, Y.H. Lin, Q. Zhang, D.Z. Zeng, Q. Zhang, H.Y. Fan, Effect of treatment time on the microstructure of austenitic stainless steel during low-temperature liquid nitrocarburizing. Metall. Mater. Trans. A 45(10), 4525–4534 (2014)CrossRefGoogle Scholar
  22. 22.
    P. Jacquet, J.B. Coudert, P. Lourdin, How different steel grades react to a salt bath nitrocarburizing and post-oxidation process: Influence of alloying elements. Surf. Coat. Technol. 205(16), 4064–4067 (2011)CrossRefGoogle Scholar
  23. 23.
    Y.Y. Su, F.S. Chen, L.H. Chiu, H. Chang, Effect of nitrocarburized layer on the resistivity properties of stainless steels. Adv. Mater. Res. 47–50, 670–673 (2008)CrossRefGoogle Scholar
  24. 24.
    M.M. Mourad, S. El-Hadad, M.M. Ibrahim, Effects of molybdenum addition on the microstructure and mechanical properties of ni-hard white cast iron. T. Indian. I. Meta. 68(5), 715–722 (2015)CrossRefGoogle Scholar
  25. 25.
    Q.W. Li, D.F. Luo. Influence of Deep-layer QPQ Treatment Parameter on the Layer Microstructure of 35CrMo. Proceedings of the 2012 Second International Conference on Electric Technology and Civil Engineering, (2012)Google Scholar
  26. 26.
    M. Mohammadnezhad, V. Javaheri, M. Shamanian, M. Naseri, M. Bahrami, Effects of vanadium addition on microstructure, mechanical properties and wear resistance of Ni-Hard4 white cast iron. Mater. Design. 49, 888–893 (2013)CrossRefGoogle Scholar

Copyright information

© American Foundry Society 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringZhengzhou UniversityZhengzhouChina

Personalised recommendations