Advertisement

Role of Sr in Microstructure, Hardness and Biodegradable Behavior of Cast Mg–2Zn–2Ca–0.5Mn (ZXM220) Alloy for Potential Implant Application

  • Huseyin ZenginEmail author
Article
  • 29 Downloads

Abstract

Microstructure, hardness and biocorrosion properties of ZXM220–xSr alloys (x = 0, 0.2, 0.4, 0.8 and 1 wt%) were investigated, and the results were compared with each other. Microstructural characterizations were carried out by XRD, optical and scanning electron microscopes. Biocorrosion properties were determined by immersion and electrochemical corrosion tests, performed in a simulated body fluid solution at 37 °C. Compared to the Sr-free alloy, Sr-bearing alloys exhibited a smaller grain size and a higher volume fraction of second-phase particles. The hardness of the alloy was also gradually improved by increasing Sr additions. Biocorrosion properties of the alloy significantly improved by 0.2 wt% Sr addition, and these properties deteriorated with higher additions of Sr due to the strong microgalvanic effect of coarse second-phase particles. Therefore, the ZXM220–0.2Sr alloy can be regarded as a promising candidate for a new biodegradable implant material due to the optimum results of mechanical and biocorrosion properties.

Keywords

ZXM220 magnesium alloys microstructure corrosion biomaterial 

Notes

References

  1. 1.
    M.-S. Song, R.-C. Zeng, Y.-F. Ding, R.W. Li, M. Easton, I. Cole, N. Birbilis, X.-B. Chen, J. Mater. Sci. Technol. 35, 535 (2019)CrossRefGoogle Scholar
  2. 2.
    A. Elsayed, E. Vandersluis, S. Lun Sin, C. Ravindran, Int. J. Met. 11, 749 (2017)Google Scholar
  3. 3.
    M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Biomaterials 27, 1728 (2006)CrossRefGoogle Scholar
  4. 4.
    Z. Li, X. Gu, S. Lou, Y. Zheng, Biomaterials 29, 1329 (2008)CrossRefGoogle Scholar
  5. 5.
    C.H. Caceres, G.E. Mann, J.R. Griffiths, Metall. Mater. Trans. A 42, 1950 (2011)CrossRefGoogle Scholar
  6. 6.
    S. Cai, T. Lei, N. Li, F. Feng, Mater. Sci. Eng., C 32, 2570 (2012)CrossRefGoogle Scholar
  7. 7.
    H.R. Bakhsheshi-Rad, M.H. Idris, M.R.A. Kadir, S. Farahany, Mater. Des. 33, 88 (2012)CrossRefGoogle Scholar
  8. 8.
    A. Incesu and A. Gungor, Int. J. Met. (2019)Google Scholar
  9. 9.
    J.C. Gao, S. Wu, Y. Wang, L.Y. Qiao, Mater. Sci. Forum 610, 942–945 (2009)CrossRefGoogle Scholar
  10. 10.
    E. Zhang, D. Yin, L. Xu, L. Yang, K. Yang, Mater. Sci. Eng., C 29, 987 (2009)CrossRefGoogle Scholar
  11. 11.
    H. Lai, J. Li, J. Li, Y. Zhang, Y. Xu, J. Mater. Sci. Mater. Med. 29, 87 (2018)CrossRefGoogle Scholar
  12. 12.
    D. Ke, S. Tarafder, S. Vahabzadeh, S. Bose, Mater. Sci. Eng., C 96, 10 (2019)CrossRefGoogle Scholar
  13. 13.
    Y. Li, C. Wen, D. Mushahary, R. Sravanthi, N. Harishankar, G. Pande, P. Hodgson, Acta Biomater. 8, 3177 (2012)CrossRefGoogle Scholar
  14. 14.
    S. Bose, S. Tarafder, S.S. Banerjee, N.M. Davies, A. Bandyopadhyay, Bone 48, 1282 (2011)CrossRefGoogle Scholar
  15. 15.
    M. Cheng, J. Chen, H. Yan, B. Su, Z. Yu, W. Xia, X. Gong, J. Alloys Compd. 691, 95 (2017)CrossRefGoogle Scholar
  16. 16.
    D. Jiang, Y. Dai, Y. Zhang, C. Liu, K. Yu, Mater. Res. Express 6, 056556 (2019)CrossRefGoogle Scholar
  17. 17.
    L. Yan, J. Zhou, Z. Sun, M. Yang, L. Ma, Mater. Res. Express 5, 045401 (2018)CrossRefGoogle Scholar
  18. 18.
    J. Wang, Y. Ma, S. Guo, W. Jiang, Q. Liu, Mater. Des. 153, 308 (2018)CrossRefGoogle Scholar
  19. 19.
    H. Pan, K. Pang, F. Cui, F. Ge, C. Man, X. Wang, Z. Cui, Corros. Sci. 157, 420 (2019)CrossRefGoogle Scholar
  20. 20.
    H.R. Bakhsheshi-Rad, M.H. Idris, M.R. Abdul-Kadir, A. Ourdjini, M. Medraj, M. Daroonparvar, E. Hamzah, Mater. Des. 53, 283 (2014)CrossRefGoogle Scholar
  21. 21.
    H. Zengin, Y. Turen, L. Elen, J. Mater. Eng. Perform 28, 4647–4657 (2019)CrossRefGoogle Scholar
  22. 22.
    ASTM E112-13, Standard Test Methods for Determining Average Grain Size (ASTM International, West Conshohocken, 2013)Google Scholar
  23. 23.
    T. Kokubo, H. Takadama, Biomaterials 27, 2907 (2006)CrossRefGoogle Scholar
  24. 24.
    A. Atrens, G.-L. Song, M. Liu, Z. Shi, F. Cao, M.S. Dargusch, Adv. Eng. Mater. 17, 400 (2015)CrossRefGoogle Scholar
  25. 25.
    A. A. Nayeb-Hashemi, J. B. Clark, and ASM International, Phase Diagrams of Binary Magnesium Alloys (ASM International, Metals Park, 1988)Google Scholar
  26. 26.
    H. Zengin, Y. Turen, Mater. Chem. Phys. 214, 421 (2018)CrossRefGoogle Scholar
  27. 27.
    A.S.M. Handbook, Volume 3: Alloy Phase Diagrams, 10th edn. (ASM International, Materials Park, 1992)Google Scholar
  28. 28.
    G.L. Song, A. Atrens, Adv. Eng. Mater. 1, 11 (1999)CrossRefGoogle Scholar
  29. 29.
    G.R. Argade, S.K. Panigrahi, R.S. Mishra, Corros. Sci. 58, 145 (2012)CrossRefGoogle Scholar
  30. 30.
    N. Birbilis, K.D. Ralston, S. Virtanen, H.L. Fraser, C.H.J. Davies, Corros. Eng., Sci. Technol. 45, 224 (2010)CrossRefGoogle Scholar
  31. 31.
    M. Mandal, A.P. Moon, G. Deo, C.L. Mendis, K. Mondal, Corros. Sci. 78, 172 (2014)CrossRefGoogle Scholar
  32. 32.
    J.W. Chang, L.M. Peng, X.W. Guo, A. Atrens, P.H. Fu, W.J. Ding, X.S. Wang, J. Appl. Electrochem. 38, 207 (2008)CrossRefGoogle Scholar
  33. 33.
    M.E. Turan, Y. Sun, F. Aydin, H. Zengin, Y. Turen, H. Ahlatci, Mater. Chem. Phys. 218, 182 (2018)CrossRefGoogle Scholar
  34. 34.
    G. Song, A. Atrens, D.S. John, X. Wu, J. Nairn, Corros. Sci. 39, 1981 (1997)CrossRefGoogle Scholar
  35. 35.
    M. Liu, P. Schmutz, P.J. Uggowitzer, G. Song, A. Atrens, Corros. Sci. 52, 3687 (2010)CrossRefGoogle Scholar
  36. 36.
    M. Jamesh, S. Kumar, T.S.N. Sankara Narayanan, Corros. Sci. 53, 645 (2011)CrossRefGoogle Scholar
  37. 37.
    H. Li, S. Pang, Y. Liu, L. Sun, P.K. Liaw, T. Zhang, Mater. Des. 67, 9 (2015)CrossRefGoogle Scholar
  38. 38.
    X. Gu, Y. Zheng, S. Zhong, T. Xi, J. Wang, W. Wang, Biomaterials 31, 1093 (2010)CrossRefGoogle Scholar

Copyright information

© American Foundry Society 2019

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringKarabuk UniversityKarabukTurkey

Personalised recommendations