Advertisement

International Journal of Metalcasting

, Volume 13, Issue 4, pp 753–767 | Cite as

The Effect of Coefficient of Restitution in Modeling of Sand Granular Flow for Core Making: Part I Free-Fall Experiment and Theory

  • Jun Ge
  • Charles A. MonroeEmail author
Article
  • 100 Downloads

Abstract

Coefficient of restitution (COR) is known to be lower for liquid-coated wet particles than dry particles due to higher inelastic effect caused by cohesion force of liquid layer. The attempt is made in this two-part article to reproduce different granular sand flows in two-fluid modeling (TFM) by changing the COR value. Instead of the original definition as a vector of the ratio between impact and rebound velocity in particle–particle collision microscopically, COR works as a scalar degree in continuum model to focus on its ability to represent the energy dissipation for granular sand flows with different characteristics attributed from the particle properties and wetting conditions macroscopically. Based on this, COR is measured and compared for industrial-grade sand in a free-fall experiment by tracking the movement of particles in the stream. Its transient explanation is illustrated in 2D TFM simulation accordingly. Comparison is made for sand materials with different impact velocity, grain properties, content level of binder and additive. The experiment result shows that in the tested velocity range COR value measured from liquid-coated sand with 1.2 wt% binder is 0.70 ± 0.05, while that for dry sand ranges from 0.88 to 0.98. The simulation also demonstrates the significant difference in sand flow performance due to the variation in COR, which is of great importance for modeling of core-making process in foundry industry. The analysis using 1D simple approach with equation similar to Bernoulli’s model on the flow path indicates that theoretically COR can have either positive or negative correlation with granular temperature. The correlation of COR and sand mixing condition as well as the flow performance is further verified in parametric study on lab core shooter at a given blow pressure using a customized test box, which is reported in Part II of this two-part article.

Keywords

sand core granular flow numerical simulation two-fluid modeling coefficient of restitution 

Notes

Acknowledgements

Grateful acknowledgment is made to Laempe Reich Corporation for the support of this work. Also, many thanks to Department of Material Science and Engineering at University of Alabama Birmingham.

References

  1. 1.
    C.E. Brennen, Fundamentals of Multiphase Flow (Cambridge University Press, New York, 2005).  https://doi.org/10.1017/CBO9780511807169 CrossRefGoogle Scholar
  2. 2.
    X. Zhou, Y. Wang, Z. Li, J. Xi’an Jiao. Univ. 24(1), 60–66 (2014).  https://doi.org/10.7652/xjtuxb201401011 CrossRefGoogle Scholar
  3. 3.
    G.B. Crosta, F.V. De Blasio, M. De Caro, Landslides (2016), pp. 1–22.  https://doi.org/10.1007/s10346-016-0697-3
  4. 4.
    F. Xiao, L. Guo, Y. Wang, J. Eng. Thermophys. 33(2), 259–262 (2012)CrossRefGoogle Scholar
  5. 5.
    G.S. Ma, X.J. Zheng, Eur. Phys. J. E 34(54) (2011).  https://doi.org/10.1140/epje/i2011-11054-3
  6. 6.
    M. Ehsani, S. Movahedirad, S. Shahhosseini, Chem. Eng. Technol. 38(10), 1827–1836 (2015).  https://doi.org/10.1002/ceat.201400744 CrossRefGoogle Scholar
  7. 7.
    Y. He, T. Wang, N. Deen, Particuology 10, 428–437 (2012).  https://doi.org/10.1016/j.partic.2012.02.001 CrossRefGoogle Scholar
  8. 8.
    Y. Zhang, J. Wang, X. Gu, Chem. Eng. Res. Des. 111, 353–361 (2016).  https://doi.org/10.1016/j.cherd.2016.05.021 CrossRefGoogle Scholar
  9. 9.
    W. Du, X. Bao, J. Xu, Chem. Eng. Sci. 61, 4558–4570 (2006).  https://doi.org/10.1016/j.ces.2006.02.028 CrossRefGoogle Scholar
  10. 10.
    J. Wu, Y. Cui, W. Li, J. Mater. Sci. Technol. 17(6), 625–628 (2001)Google Scholar
  11. 11.
    S. Scott, A. Sholapurwalla, M. Berkelhammer, S. Epolito, R. Henning, AFS Trans. 120, 1–5 (2012)Google Scholar
  12. 12.
    K. Williams, D. Snider, M. Walker, S. Palczewski, AFS Trans. 110, 237–256 (2002)Google Scholar
  13. 13.
    M. Schneider, C. Heisser, A. Serghini, A. Kessler, AFS. Trans. 116, 419–432 (2008)Google Scholar
  14. 14.
    E. Flender, J. Sturm, Int. Metalcast. 4, 7 (2010).  https://doi.org/10.1007/BF03355463 CrossRefGoogle Scholar
  15. 15.
    J. Archibald, J. Kroker, Int. Metalcast. 7, 51 (2013).  https://doi.org/10.1007/BF03355553 CrossRefGoogle Scholar
  16. 16.
    R. González, R. Colás, A. Velasco et al., Int. Metalcast. 5, 41 (2011).  https://doi.org/10.1007/BF03355506 CrossRefGoogle Scholar
  17. 17.
    H. Makino, Y. Maeda, H. Nomura, AFS Trans. 82, 1–9 (2002)Google Scholar
  18. 18.
    Y. Maeda, Y. Ito, S. Yoshida, H. Makino, J. Int. Metalcast. (2010).  https://doi.org/10.1007/s40962-018-0284-6 CrossRefGoogle Scholar
  19. 19.
    L. Tong, J. Zhou, Y. Yin et al., Int. Metalcast. (2019).  https://doi.org/10.1007/s40962-018-00293-x CrossRefGoogle Scholar
  20. 20.
    H. Ryu, B. Yi, Y. Kwon, Intell. Serv. Robot. 10(1), 13–29 (2017).  https://doi.org/10.1007/s11370-016-0206-5 CrossRefGoogle Scholar
  21. 21.
    C. Mangwandi, Y.S. Cheong, M.J. Adams, Chem. Eng. Sci. 62, 437–450 (2007).  https://doi.org/10.1016/j.ces.2006.08.063 CrossRefGoogle Scholar
  22. 22.
    K.N. Kamrin, Stochastic and Deterministic Models for Dense Granular Flow, Ph. D. Thesis, Massachusetts Institute of Technology, 2008Google Scholar
  23. 23.
    C.J. Reagle, Technique for Measuring the Coefficient of Restitution for Microparticle Sand Impacts at High Temperature for Turbomachinery Applications, Ph. D. thesis, Virginia Polytechnic Institute and State University, 2012Google Scholar
  24. 24.
    K. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985).  https://doi.org/10.1017/CBO9781139171731 CrossRefGoogle Scholar
  25. 25.
    S.H. Hosseini, G. Ahmadi, B.S. Razavi et al., Energy Fuels 24, 6086–6098 (2010).  https://doi.org/10.1021/ef100612r CrossRefGoogle Scholar
  26. 26.
    X. Gao, C. Wu, Y. Cheng et al., Powder Technol. 228, 1–13 (2012).  https://doi.org/10.1016/j.powtec.2012.04.025 CrossRefGoogle Scholar
  27. 27.
    P. Sahoo, A. Sahoo, Part. Sci. Technol. 33, 273–289 (2015).  https://doi.org/10.1080/02726351.2014.952393 CrossRefGoogle Scholar
  28. 28.
    A. Neri, D. Gidaspow, AIChE J. 46(1), 52–67 (2000).  https://doi.org/10.1002/aic.690460108 CrossRefGoogle Scholar
  29. 29.
    T. McKeen, T. Pugsley, Powder Technol. 129, 139–152 (2003).  https://doi.org/10.1016/S0032-5910(02)00294-2 CrossRefGoogle Scholar
  30. 30.
    T. Tang, Y. He, A. Ren et al., Powder Technol. 304, 165–176 (2016).  https://doi.org/10.1016/j.powtec.2016.08.023 CrossRefGoogle Scholar
  31. 31.
    B.P.B. Hoomans, J.A.M. Kuipers, W.J. Briels et al., Chem. Eng. Sci. 51(1), 99–118 (1996).  https://doi.org/10.1016/0009-2509(95)00271-5 CrossRefGoogle Scholar
  32. 32.
    M.J.V. Goldschmidt, J.A.M. Kuipers, W.P.M. van Swaaij, Chem. Eng. Sci. 56, 571–578 (2001).  https://doi.org/10.1016/S0009-2509(00)00262-1 CrossRefGoogle Scholar
  33. 33.
    M.J.V. Goldschmidt, R. Beetstra, J.A.M. Kuipers, Powder Technol. 142, 23–47 (2004).  https://doi.org/10.1016/j.powtec.2004.02.020 CrossRefGoogle Scholar
  34. 34.
    S. Benyahia, H. Arastoopour, T.M. Knowlton et al., Powder Technol. 112, 24–33 (2000).  https://doi.org/10.1016/S0032-5910(99)00302-2 CrossRefGoogle Scholar
  35. 35.
    S. Benyahia, M. Syamlal, T.J. O’Brien, AIChE J. 53(10), 2549–2568 (2007).  https://doi.org/10.1002/aic.11276 CrossRefGoogle Scholar
  36. 36.
    C. Ni, G. Lu, J. Wu, Adv. Mat. Sci. Eng. (2016).  https://doi.org/10.1155/2016/2317180
  37. 37.
    B. Winartomo, U. Vroomen, M. Pelzer, Int. J. Cast Met. Res. 18(1), 13–20 (2005).  https://doi.org/10.1179/136404605225022811 CrossRefGoogle Scholar
  38. 38.
    A. Lorenz, C. Tuozzolo, M.Y. Louge, Exp. Mech. 37(3), 292–298 (1997).  https://doi.org/10.1007/BF02317421 CrossRefGoogle Scholar
  39. 39.
    F. Shaffer, H. Massah, J. Sinclair et al., Technical report, Federal Energy Technology Center, Carnegie Mellon University, 1995.  https://doi.org/10.2172/3715
  40. 40.
    M.C. Marinack Jr., R.E. Musgrave, C.F. Higgs III, Tribol. Trans. 56(4), 572–580 (2013).  https://doi.org/10.1080/10402004.2012.748233 CrossRefGoogle Scholar
  41. 41.
    F. Gollwitzer, I. Rehberg, C.A. Kruelle et al., Phys. Rev. E 86(1), 011303 (2012).  https://doi.org/10.1103/PhysRevE.86.011303 CrossRefGoogle Scholar
  42. 42.
    V.S. Sutkar, N.G. Deen, J.T. Padding et al., AIChE J. 61(3), 769–779 (2015).  https://doi.org/10.1002/aic.14693 CrossRefGoogle Scholar
  43. 43.
    J. Duran, Sands, Powders, and Grains: An Introduction to the Physics of Granular Materials (Springer, New York, 1999).  https://doi.org/10.1007/978-1-4612-0499-2 CrossRefGoogle Scholar
  44. 44.
    D. Liu, F. Dong, D. He, Acta Geogr. Sin. 51(5), 434–444 (1996)Google Scholar
  45. 45.
    Z. Li, W. Yuan, W. Li, Acta Aerodyn. Sin. 29(6), 784–788 (2011)Google Scholar
  46. 46.
    G.F. Yao, C.W. Hirt, M. Barkhudarov, Model. Cast. Weld. Adv. Solid. Proc. XI, TMS, 633–639 (2003)Google Scholar
  47. 47.
    D. Lefebvre, A. Mackenbrock, V. Vidal, Foundry Trade J. 179(3621), 17–20 (2005)Google Scholar
  48. 48.
    S.I. Bakhtiyarov, R.A. Overfelt, Powder Technol. 133(1), 68–78 (2003).  https://doi.org/10.1016/S0032-5910(03)00081-0 CrossRefGoogle Scholar
  49. 49.
    D. Gidaspow, Multiphase Flow and fluidization: Continuum and Kinetic Theory Descriptions (Academic Press, Cambridge, 1994)Google Scholar
  50. 50.
    J. Ding, D.A. Gidaspow, AIChE J. 36, 523–538 (1990).  https://doi.org/10.1002/aic.690360404 CrossRefGoogle Scholar
  51. 51.
    C.K.K. Lun, S.B. Savage, D.J. Jeffrey, J. Fluid Mech. 140, 223–256 (1984).  https://doi.org/10.1017/S0022112084000586 CrossRefGoogle Scholar
  52. 52.
    Ansys, Ansys ® Fluent 17.0 Theory Guide (ANSYS Inc, Canonsburg, 2016)Google Scholar
  53. 53.
    J. Cao, G. Ahmadi, Int. J. Multiph. Flow 21(6), 1203–1228 (1995).  https://doi.org/10.1016/0301-9322(95)00042-V CrossRefGoogle Scholar
  54. 54.
    D. Gidaspow, R. Bezburuah, J. Ding, No. CONF-920502-1. Illinois Institute of Technology, Chicago, IL, Department of Chemical Engineering, 1992Google Scholar
  55. 55.
    D.G. Schaeffer, J. Differ. Equ. 66(1), 19–50 (1987).  https://doi.org/10.1016/0022-0396(87)90038-6 CrossRefGoogle Scholar
  56. 56.
    M. Syamlal, T.J. O’Brien, AIChE J. 85, 22–31 (1989)Google Scholar
  57. 57.
    J.F. Richardson, W.N. Zaki, Trans. Inst. Chem. Eng. 32, 35–53 (1954).  https://doi.org/10.1016/S0263-8762(97)80006-8 CrossRefGoogle Scholar
  58. 58.
    P.C. Johnson, P. Nott, R. Jackson, J. Fluid Mech. 210, 501–535 (1990).  https://doi.org/10.1017/S0022112090001380 CrossRefGoogle Scholar
  59. 59.
    B.J. Alder, T.E. Wainwright, J. Chem. Phys. 33, 1439–1451 (1960).  https://doi.org/10.1063/1.1731425 CrossRefGoogle Scholar
  60. 60.
    N.F. Carnahan, K.E. Starling, J. Chem. Phys. 51, 635–636 (1969).  https://doi.org/10.1063/1.1672048 CrossRefGoogle Scholar
  61. 61.
    S.B. Savage, D.J. Jeffrey, J. Fluid Mech. 110, 255–272 (1981).  https://doi.org/10.1017/S002211208100073 CrossRefGoogle Scholar
  62. 62.
    J.T. Jenkins, S.B. Savage, J. Fluid Mech. 130, 187–202 (1983).  https://doi.org/10.1017/S0022112083001044 CrossRefGoogle Scholar
  63. 63.
    R.A. Bagnold, Proc. R. Soc. A225, 49–63 (1954).  https://doi.org/10.1098/rspa.1954.0186 CrossRefGoogle Scholar
  64. 64.
    S. Ogawa, A. Umemura, N. Oshima, J. Appl. Math. Phys. 31, 483–493 (1980).  https://doi.org/10.1007/BF01590859 CrossRefGoogle Scholar
  65. 65.
    S.B. Savage, J. Fluid Mech. 194, 457–478 (1988).  https://doi.org/10.1017/S0022112088003064 CrossRefGoogle Scholar
  66. 66.
    H. Lu, D. Gidaspow, Chem. Eng. Sci. 58(16), 3777–3792 (2003).  https://doi.org/10.1016/S0009-2509(03)00238-0 CrossRefGoogle Scholar
  67. 67.
    S. Ergun, Chem. Eng. Prog. 48, 89–94 (1952)Google Scholar
  68. 68.
    C.Y. Wen, Y.H. Yu, Chem. Eng. Prog. Symp. Ser. 62, 100–111 (1966).  https://doi.org/10.1002/aic.690120343 CrossRefGoogle Scholar
  69. 69.
    R. Di Felice, Int. J. Multiph. Flow 20(1), 153–159 (1994).  https://doi.org/10.1016/0301-9322(94)90011-6 CrossRefGoogle Scholar
  70. 70.
    J.L. Sinclair, R. Jackson, AIChE J. 35(9), 1473–1486 (1989).  https://doi.org/10.1002/aic.690350908 CrossRefGoogle Scholar
  71. 71.
    P.C. Johnson, R. Jackson, J. Fluid Mech. 176, 67–93 (1987).  https://doi.org/10.1017/S0022112087000570 CrossRefGoogle Scholar
  72. 72.
    J.R. Brown, Foseco Foundryman’s Handbook (Butterworth-Heinemann, Oxford, 1994)Google Scholar
  73. 73.
    G. Hamm, B. Hamm, S. Neltner, V. LaFay, AFS Trans. 1–6 (2013)Google Scholar
  74. 74.
    T. Li, J. Grace, X. Bi, Powder Technol. 203(3), 447–457 (2010).  https://doi.org/10.1016/j.powtec.2010.06.005 CrossRefGoogle Scholar
  75. 75.
    D.S. Boyalakuntla, S. Pannala, C.E. Finney et al., in AIChE Annual Meeting, Cincinnati (2005)Google Scholar
  76. 76.
    B.J. Ennis, J. Li, I.T. Gabriel, Chem. Eng. Sci. 45(10), 3071–3088 (1990).  https://doi.org/10.1016/0009-2509(90)80054-I CrossRefGoogle Scholar
  77. 77.
    D.N. Mazzone, G.I. Tardos, R. Pfeffer, Powder Technol. 51, 71–83 (1987).  https://doi.org/10.1016/0032-5910(87)80041-4 CrossRefGoogle Scholar
  78. 78.
    J. Fu, M.J. Adams, G.K. Reynolds et al., Powder Technol. 140, 248–257 (2004).  https://doi.org/10.1016/j.powtec.2004.01.012 CrossRefGoogle Scholar
  79. 79.
    B.E. Dahneke, J. Colloid Interf. Sci. 37, 342–353 (1971).  https://doi.org/10.1016/0021-9797(71)90302-X CrossRefGoogle Scholar
  80. 80.
    W. Goldsmith, Impact: The Theory and Physical Behavior of Colliding Solids (E. Arnold, London, 1960)Google Scholar
  81. 81.
    C. Thornton, J. Appl. Mech. 64, 383–386 (1997).  https://doi.org/10.1115/1.2787319 CrossRefGoogle Scholar
  82. 82.
    T. Schwager, T. Pöschel, Phys. Rev. E 78, 051304 (2008).  https://doi.org/10.1103/PhysRevE.78.051304 CrossRefGoogle Scholar

Copyright information

© American Foundry Society 2019

Authors and Affiliations

  1. 1.University of Alabama BirminghamBirminghamUSA

Personalised recommendations