International Journal of Metalcasting

, Volume 13, Issue 3, pp 700–714 | Cite as

Microstructural Characteristics, Mechanical Properties, Fracture Analysis and Corrosion Behavior of Hypereutectic Al–13.5Si Alloy

  • Jelena Scepanovic
  • Vanja AsanovicEmail author
  • Safija Herenda
  • Darko Vuksanovic
  • Dragan Radonjic
  • Fehim Korac


Hypereutectic Al–13.5Si alloy containing 1.47% of copper and 1.30% of magnesium was designed as a potential material for internal combustion engine pistons. The optical microscopy and scanning electron microscopy (SEM) revealed the fine dendrites of α-Al phase and significantly dispersed eutectics in as-cast specimens. Several intermetallic phases were observed indicating different crystallization velocities and alloy composition nonuniformities. The tensile testing and hardness measurements performed at room temperature have shown an excellent tensile strength and hardness of as-cast specimens, but low elongation due to a complex multiphase structure. The mechanical examinations at 250 °C and 300 °C have presented a decrease in tensile strength and an increase in elongation, while hardness was slightly changed. The fractographic analysis has shown the features of the brittle as well as ductile fracture. The areas of dimples and areas containing particles with smooth surfaces were detected. Electrochemical methods, Tafel linear polarization, cyclic voltammetry, chronoamperometric measurement and impedance spectroscopy were employed to determine the corrosion behavior of as-cast specimens in 0.5 M NaCl solution. The resistant oxide layer formed on the surface was not entirely consistent due to the appearance of intermetallic phases. SEM examinations of corroded samples did not discover severe pits on their surfaces.


Al–Si alloy intermetallics mechanical properties fracture corrosion 



  1. 1.
    A.W. Orlowicz, M. Tupaj, M. Mróz, A. Trytek, Combustion engine cylinder liners made of Al–Si alloys. Arch. Foundry Eng. 15(2), 71–74 (2015)CrossRefGoogle Scholar
  2. 2.
    R. Wieszala, J. Piątkowski, Selected tribological properties of A390.0 alloy. Arch. Foundry Eng. 17(4), 175–178 (2017)CrossRefGoogle Scholar
  3. 3.
    M. Javidani, D. Larouche, Application of cast Al–Si alloys in internal combustion engine components. Int. Mater. Rev. 59(3), 132–158 (2014)CrossRefGoogle Scholar
  4. 4.
    G.K. Sigworth, Int. Metalcast 2, 19 (2008). CrossRefGoogle Scholar
  5. 5.
    C.G. Shivaprasad, K. Aithal, S. Narendranath, V. Desai, P.G. Mukunda, Effect of combined grain refinement and modification on microstructure and mechanical properties of hypoeutectic, eutectic and hypereutectic Al–Si alloys. Int. J. Microstruct. Mater. Prop. 10(3/4), 274–284 (2015)Google Scholar
  6. 6.
    J. Jorstad, D. Apelian, Int. Metalcast 3, 13 (2009). CrossRefGoogle Scholar
  7. 7.
    A. Ahmed, M.S. Wahab, A.A. Raus, K. Kamarudin, Q. Bakhsh, D. Ali, Mechanical properties, material and design of the automobile piston: an ample review. Indian J. Sci. Technol. 9(36), 1–7 (2016)Google Scholar
  8. 8.
    J.O. Lima, C.R. Barbosa, I.A.B. Magno, J.M. Nascimento, A.S. Barros, M.C. Oliveira, F.A. Souza, O.L. Rocha, Microstructural evolution during unsteady-state horizontal solidification of Al–Si–Mg (356) alloy. Trans. Nonferrous Met. Soc. China 28(6), 1073–1083 (2018)CrossRefGoogle Scholar
  9. 9.
    J.R. Davis, Alloying: Understanding the Basics, 1st edn. (Materials Park, ASM International, 2001), p. 392Google Scholar
  10. 10.
    F.C. Robles-Hernandez, J.M.H. Ramírez, R. Mackay, Al–Si Alloys: Automotive, Aeronautical, and Aerospace Applications (Springer, Switzerland, 2017), p. 187CrossRefGoogle Scholar
  11. 11.
    J. Campbell, M. Tiryakioglu, Review of effect of P and Sr on modification and porosity development in Al–Si alloys. Mater. Sci. Technol. 26(3), 262–268 (2010)CrossRefGoogle Scholar
  12. 12.
    M. Jolly, in Comprehensive Structural Integrity, ed. by J. Milne, R. Ritchie, B.L. Karihaloo (Elsevier, Amsterdam), p. 423Google Scholar
  13. 13.
    G. Sigworth, J. Campbell, J. Jorstad, Int. Metalcast 3, 65 (2009). CrossRefGoogle Scholar
  14. 14.
    B.D. Baliga, K.N. Mohandas, T.A. Kumar, Study of machinability and corrosion behaviour of Al–Si–Mg alloy treated with master alloys. Int. J. Eng. Sci. Inn. Technol. 4(3), 310–316 (2015)Google Scholar
  15. 15.
    M. Rejaeian, M. Karamouz, M. Emamy, M. Hajizamani, Effects of Be additions on microstructure, hardness and tensile properties of A380 aluminum alloys. Trans. Nonferrous Met. Soc. China 25(11), 3539–3545 (2015)CrossRefGoogle Scholar
  16. 16.
    S. Vadim, Zolotorevsky, A. Nikolay, Belov, Michael, Glazoff, in Casting Aluminum Alloys, 1st edn. (Elsevier, Oxford, 2007), p. 329, 332, 335, 369, 496Google Scholar
  17. 17.
    M. Karamouz, M. Azarbarmas, M. Emamy, M. Alipour, Microstructure, hardness and tensile properties of A380 aluminum alloy with and without Li additions. Mater. Sci. Eng. A 582, 409–414 (2013)CrossRefGoogle Scholar
  18. 18.
    R. Joseph, Davis, in Corrosion of Aluminum and Aluminum Alloys. (ASM International, Materials Park, 1999), pp. 38–42, 44Google Scholar
  19. 19.
    T.L. Su, S.S. Wang, L.C. Tsao, S.Y. Chang, T.H. Chuang, M.S. Yeh, Corrosion behaviors of Al–Si–Cu-based filler metals and 6061-T6 brazements. J. Mater. Eng. Perform. 11(2), 187–193 (2002)CrossRefGoogle Scholar
  20. 20.
    W.R. Osorio, P.R. Goulart, A. Garcia, Effect of silicon content on microstructure and electrochemical behaviour of hypoeutectic Al–Si alloys. Mater. Lett. 62(3), 365–369 (2008)CrossRefGoogle Scholar
  21. 21.
    Y. Wu, H. Liao, Corrosion behavior of extruded near eutectic Al–Si–Mg and 6063 alloys. J. Mater. Sci. Technol. 29(4), 380–386 (2013)CrossRefGoogle Scholar
  22. 22.
    P. Chen, L. Liang, G. Luo, J. Zeng, Relationship between heat treatments and corrosion of Al–Si–Mg casting alloy. Adv. Mater. Res. 900, 96–99 (2014)CrossRefGoogle Scholar
  23. 23.
    A. Wiengmoon, P. Sukchot, N. Tareelap, J.T.H. Pearce, T. Chairuangsri, Effects of T6 heat treatment with double solution treatment on microstructure, hardness and corrosion resistance of cast Al–Si–Cu alloys. Arc. Metall. Mater. 60(2), 881–886 (2015)CrossRefGoogle Scholar
  24. 24.
    A.M. Cardinale, D. Macciò, G. Luciano, E. Canepa, P. Traverso, Thermal and corrosion behavior of as cast Al–Si alloys with rare earth elements. J. Alloys Compd. 695, 2180–2189 (2017)CrossRefGoogle Scholar
  25. 25.
    J.G. Kaufman, E.L. Rooy, Aluminum Alloy Castings: Properties, Processes, and Applications (Materials Park, ASM International, 2004), p. 14Google Scholar
  26. 26.
    R.W. Revie, H.H. Uhlig, Corrosion and Corrosion Control—An Introduction to Corrosion Science and Engineering (Wiley, Hoboken, 2008), p. 394Google Scholar
  27. 27.
    F. Toptan, A.C. Alves, I. Kerti, E. Ariza, L.A. Rocha, Corrosion and tribocorrosion behavior of Al–Si–Cu–Mg alloy and its composites reinforced with B4C particles in 0.05 M NaCl solution. Wear 306(1–2), 27–35 (2013)Google Scholar
  28. 28.
    G. Svenningsen, J.E. Lein, A. Bjorgum, J.H. Nordlien, Y. Yu, K. Nisanciogly, Effect of low copper content and heat treatment on intergranular corrosion of model AlMgSi alloys. Corros. Sci. 48, 226–242 (2006)CrossRefGoogle Scholar
  29. 29.
    A. Hossain, F. Gulshan, A.S.W. Kurny, Electrochemical corrosion behaviour of Ni-containing hypoeutectic Al–Si alloy. J. Electrochem. Sci. Eng. 5, 173–179 (2015)Google Scholar
  30. 30.
    H.O. Santos, F.M. Reis, C.T. Kunioshi, J.L. Rossi, I. Costa, Corrosion performance of Al–Si–Cu hypereutectic alloys in a synthetic condensed automotive solutions. Mater. Res. 8(2), 155–159 (2005)CrossRefGoogle Scholar
  31. 31.
    S. Zor, M. Zeren, H. Ozkazanc, E. Karakulak, Effect of Cu content on the corrosion of Al–Si eutectic alloys in acidic solutions. Anti-Corros. Methods Mater. 57(4), 185–191 (2010)CrossRefGoogle Scholar
  32. 32.
    R. Arrabal, B. Mingo, A. Pardo, M. Mohedano, E. Matykina, I. Rodrigues, Pitting corrosion of rheocast A356 aluminium alloy in 3.5 wt% NaCl. Corros. Sci. 73, 342–355 (2013)Google Scholar
  33. 33.
    R.A.M. Anaee, Study of Corrosion Behavior of Al-Si-Cu/WC Composites in 0.1 N NaOH. JKSUS 26(1), 55–65 (2015)Google Scholar
  34. 34.
    M.V. Rendón, J.A. Calderón, Evaluation of the corrosion behavior of the Al-356 alloy in NaCl solutions. Quim. Nova 34(7), 1163–1166 (2011)CrossRefGoogle Scholar
  35. 35.
    Y.H. Cho, H.-C. Lee, K.H. Oh, A.K. Dahle, Effect of strontium and phosphorus on eutectic Al–Si nucleation and formation of β-Al5FeSi in hypoeutectic Al–Si foundry alloys. Metall. Mater. Trans. A 39(10), 2435–2448 (2008)CrossRefGoogle Scholar
  36. 36.
    K. Al–Helal, I.C. Stone, Z. Fan, Simultaneous primary Si refinement and eutectic modification in hypereutectic Al-Si alloys. Trans. Indian Inst. Met. 65(6), 663–667 (2012)CrossRefGoogle Scholar
  37. 37.
    M. Tiryakioglu, V.J. Campbell, Guidelines for designing metal casting research: application to aluminium alloy casting. Int. J. Cast Met. Res. 20(1), 25–29 (2007)CrossRefGoogle Scholar
  38. 38.
    Y. Sui, Q. Wang, G. Wang, T. Liu, Effects of Sr content on the microstructure and mechanical properties of cast Al–12Si–4Cu–2Ni–0.8Mg alloys. J. Alloys Compd. 622, 572-579 (2015)Google Scholar
  39. 39.
    S. Farahany, A. Ourdjini, H.R. Bakhsheshi-Rad, Microstructure, mechanical properties and corrosion behavior of Al–Si–Cu–Zn–X (X = Bi, Sb, Sr) die cast alloy. Trans. Nonferrous Met. Soc. China 26(1), 28–38 (2016)CrossRefGoogle Scholar
  40. 40.
    C. Bidmeshki, V. Abouei, H. Saghafian, S.G. Shabestari, M.T. Noghani, Effect of Mn addition on Fe-rich intermetallics morphology and dry sliding wear investigation of hypereutectic Al-17.5%Si alloys. J. Mater. Res. Technol. 5(3), 250–258 (2016)Google Scholar
  41. 41.
    G.-H. Zhang, J.-X. Zhang, B.-C. Li, W. Cai, Characterization of tensile fracture in heavily alloyed Al–Si piston alloy. Prog. Nat. Sci-Mater. 21(5), 380–385 (2011)CrossRefGoogle Scholar
  42. 42.
    C. Liang, Z.-H. Chen, Z.-Y. Huang, F.-Q. Zu, Optimizing microstructures and mechanical properties of hypereutectic Al–18%Si alloy via manipulating its parent liquid state. Mater. Sci. Eng. A 690, 387–392 (2017)CrossRefGoogle Scholar
  43. 43.
    N. Idusuyi, O.O. Ajide, O.O. Oluwole, O.A. Arotiba, Electrochemical Impedance Study of an Al6063–12%SiC–Cr Composite Immersed in 3 wt% Sodium Chloride. Procedia Manufacturing 7, 413-419 (2017)Google Scholar
  44. 44.
    V. Guillaumin, G. Mankowski, Localized corrosion of 6056 T6 aluminium alloy in chloride media. Corros. Sci. 42, 105–125 (2000)CrossRefGoogle Scholar
  45. 45.
    S. Gudic, L. Vrsalovic, M. Kliskic, I. Jerkovic, A. Radonic, M. Zekic, Corrosion Inhibition of AA 5052 aluminium alloy in NaCl solution by different types of honey. Int. J. Electrochem. Sci. 11, 998–1011 (2016)Google Scholar
  46. 46.
    F. Zeng, Z. Wei, J. Li, C. Li, X. Tan, Z. Zhang, Z. Zheng, Corrosion mechanism associated with Mg2Si and Si particles in Al–Mg–Si alloys. Trans. Nonferrous Met. Soc. China 21(12), 2559–2567 (2011)CrossRefGoogle Scholar
  47. 47.
    R.A. Rodríguez-Diaz, J. Uruchurtu-Chavarín, A.M. Cotero-Villegas, S. Valdez, J.A. Juárez-Islas, Corrosion behavior of AlMgSi alloy in aqueous saline solution. Int. J. Electrochem. Sci. 10, 1792–1808 (2015)Google Scholar
  48. 48.
    G.R. Kramer, C.M. Mendez, A.E. Ares, Evaluation of corrosion resistance of aluminum-based alloys in bioethanol produced in misiones. Procedia Mater. Sci. 9, 341–349 (2015)CrossRefGoogle Scholar
  49. 49.
    H.H. Hassan, K. Fahmy, Pitting corrosion of tin by acetate anion in acidic media. Int. J. Electrochem. Sci. 3, 29–43 (2008)Google Scholar
  50. 50.
    I.T.E. Fonseca, N. Lima, J.A. Rodrigues, M.I.S. Pereira, J.C.S. Salvador, M.G.S. Ferreira, Passivity breakdown of Al 2024-T3 alloy in chloride solutions: a test of the point defect model. Electrochem. Commun. 4(5), 353–357 (2002)CrossRefGoogle Scholar
  51. 51.
    K. Magdic, V. Horvat-Radosevic, The role of electrochemical impedance spectroscopy in the characterization of electrodes and devices for energy conversion and storage. Kem. Ind. 62(3–4), 81–91 (2013) (in Croatian)Google Scholar
  52. 52.
    M.S. Kaiser, M.R. Qadir, S. Dutta, Electrochemical corrosion performance of commercially used aluminium engine block and piston in 0.1 M NaCl. J. Mech. Eng. 45(1), 48–52 (2015)CrossRefGoogle Scholar

Copyright information

© American Foundry Society 2019

Authors and Affiliations

  1. 1.Faculty of Metallurgy and TechnologyUniversity of MontenegroPodgoricaMontenegro
  2. 2.Department of Chemistry, Faculty of ScienceUniversity of SarajevoSarajevoBosnia and Herzegovina

Personalised recommendations