Advertisement

Thermal Analysis and Graphitization Ability of Spheroidal Graphite Cast Iron Preconditioned by Al,Zr,Ca–FeSi

  • Mohd. Nadeem BhatEmail author
  • D. M. Afzal Khan
  • K. K. Singh
Article
  • 15 Downloads

Abstract

The increasing demand for pre-pouring melt quality evaluation by thermal analysis has led to some important breakthroughs in understanding the solidification of spheroidal graphite cast iron (SGI). The two important parameters which characterize the solidification cooling curve of SGI are temperature of eutectic undercooling (TEU) temperature of eutectic recalescence (TER). In this study, the response of preconditioning treatment (0.1% Al,Zr,Ca–FeSi) on TEU and TER was investigated in several samples from different heats. It was found that preconditioning increases both TEU and TER. The average eutectic graphitization ability after preconditioning was found to increase from 60 to 75. The average undercooling (∆T) and recalescence (∆Tr) in preconditioned samples were 12 °C and 2 °C, whereas in samples without preconditioning average ∆T and ∆Tr are 19 °C and 7 °C, respectively. Preconditioning improves graphitization ability thereby increasing the graphite nodule count. The actual nodule count of SG iron samples obtained by image analysis was found to be in agreement with that of nodule counts predicted by thermal analysis.

Keywords

thermal analysis preconditioning eutectic graphitization undercooling recalescence inoculation 

Abbreviations

SGI

Spheroidal graphite cast iron

TEU

Temperature of eutectic undercooling

TER

Temperature of eutectic recalescence

TEG

Graphite eutectic temperature

TEC

Cementite eutectic temperature

EGA

Eutectic graphitization ability

T

Degree of undercooling

∆Tr

Degree of recalescence

TA

Thermal analysis

Na

Actual nodule count

Np

Predicted nodule count

Notes

Acknowledgment

Authors gratefully acknowledge OCL Iron and Steel Ltd. (Amtek India) located in Bhiwadi Rajasthan, India, for permitting to conduct the experiments and providing the materials required for this study.

References

  1. 1.
    D.M. Stefanescu, Casting, vol. 15 (ASM Metal Handbook, Materials Park, 1992)Google Scholar
  2. 2.
    L. Riposan, M. Chisamera, V. Uta, S. Stan, R. Naro, D. Williams, Int. J. Met. 8, 65–80 (2014)Google Scholar
  3. 3.
    M.I. Onsoien, T. Skaland, Trans. Am. Foundry Soc. 109, 1–12 (2001)Google Scholar
  4. 4.
    M. Popescu, R. Zavadil, M. Sahoo, Int. J. Met. 3, 53–63 (2009)Google Scholar
  5. 5.
    K. Edalati, F. Akhlaghi, M. Nili-Ahmadabadi, J. Mater. Process. Technol. 160, 183–187 (2005).  https://doi.org/10.1016/j.jmatprotec.2004.06.007 CrossRefGoogle Scholar
  6. 6.
    D.M. Stefanescu, Int. J. Met. 9, 7–22 (2016).  https://doi.org/10.1007/BF03355598 Google Scholar
  7. 7.
    Y. Li, Q. Wang, J. Mater. Process. Technol. 161, 430–434 (2005).  https://doi.org/10.1016/j.jmatprotec.2004.07.078 CrossRefGoogle Scholar
  8. 8.
    M. Bartošová, A. Pribulová, Š. Eperješi, P. Futáš, J. Cast. Mater. Eng. (2018).  https://doi.org/10.7494/jcme.2018.2.1.1 Google Scholar
  9. 9.
    M. Nadeem, D.M.A. Khan, K.K. Singh, Int. J. Cast Met. Res. (2018).  https://doi.org/10.1080/13640461.2018.1434987 Google Scholar
  10. 10.
    S.S. Ojo, I. Riposan, Mater. Sci. Technol. 28, 576–581 (2012).  https://doi.org/10.1179/1743284711Y.0000000117 CrossRefGoogle Scholar
  11. 11.
    P. Ferro, A. Fabrizi, R. Cervo, C. Carollo, J. Mater. Process. Technol. 213, 1601–1608 (2013).  https://doi.org/10.1016/j.jmatprotec.2013.03.012 CrossRefGoogle Scholar
  12. 12.
    I. Riposan, M. Chisamera, S. Stan, P. Toboc, C. Ecob, D. White, Mater. Sci. Technol. 24, 579–584 (2008).  https://doi.org/10.1179/174328408X298842 CrossRefGoogle Scholar
  13. 13.
    A.D. Sosa, M.D. Echeverría, O.J. Moncada, N. Míngolo, J.A. Sikora, J. Mater. Process. Technol. 209, 5545–5551 (2009).  https://doi.org/10.1016/j.jmatprotec.2009.05.010 CrossRefGoogle Scholar
  14. 14.
    M. Nadeem, D.M.A. Khan, K.K. Singh, Int. J. Met. (2018).  https://doi.org/10.1007/s40962-018-0230-7 Google Scholar
  15. 15.
    T. Kanno, Y. Iwami, I. Kang, Int. J. Met. 11, 94–100 (2017).  https://doi.org/10.1007/s40962-016-0111-x Google Scholar
  16. 16.
    Z. Glavaš, Š. Anita, F. Kozina, Tehnički glasnik J. 6, 145–150 (2012)Google Scholar
  17. 17.
    S.O. Seidu, I. Ripoşan, U.P.B. Sci, Bull. Ser. B Chem. Mater. Sci. 73, 241–254 (2011)Google Scholar
  18. 18.
    I. Riposan, M. Chisamera, S. Stan, M. Barstow, Int. J. Cast Met. Res. 26, 152–159 (2013).  https://doi.org/10.1179/1743133612Y.0000000048 CrossRefGoogle Scholar
  19. 19.
    K.K. Singh, S.K. Sethy, Int. J. Cast Met. Res. 26, 168–175 (2013).  https://doi.org/10.1179/1743133612Y.0000000050 CrossRefGoogle Scholar
  20. 20.
    A. Regordosa, N. Llorca-Isern, Int. J. Met. 11, 778–789 (2017).  https://doi.org/10.1007/s40962-016-0120-9 Google Scholar
  21. 21.
    D.M. Stefanescu, Mater. Sci. Eng. A 413–414, 322–333 (2005).  https://doi.org/10.1016/j.msea.2005.08.180 CrossRefGoogle Scholar

Copyright information

© American Foundry Society 2019

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringNational Institute of TechnologySrinagarIndia
  2. 2.Department of Foundry TechnologyNational Institute of Foundry and Forge TechnologyRanchiIndia

Personalised recommendations