Thermal Analysis and Graphitization Ability of Spheroidal Graphite Cast Iron Preconditioned by Al,Zr,Ca–FeSi

  • Mohd. Nadeem BhatEmail author
  • D. M. Afzal Khan
  • K. K. Singh


The increasing demand for pre-pouring melt quality evaluation by thermal analysis has led to some important breakthroughs in understanding the solidification of spheroidal graphite cast iron (SGI). The two important parameters which characterize the solidification cooling curve of SGI are temperature of eutectic undercooling (TEU) temperature of eutectic recalescence (TER). In this study, the response of preconditioning treatment (0.1% Al,Zr,Ca–FeSi) on TEU and TER was investigated in several samples from different heats. It was found that preconditioning increases both TEU and TER. The average eutectic graphitization ability after preconditioning was found to increase from 60 to 75. The average undercooling (∆T) and recalescence (∆Tr) in preconditioned samples were 12 °C and 2 °C, whereas in samples without preconditioning average ∆T and ∆Tr are 19 °C and 7 °C, respectively. Preconditioning improves graphitization ability thereby increasing the graphite nodule count. The actual nodule count of SG iron samples obtained by image analysis was found to be in agreement with that of nodule counts predicted by thermal analysis.


thermal analysis preconditioning eutectic graphitization undercooling recalescence inoculation 



Spheroidal graphite cast iron


Temperature of eutectic undercooling


Temperature of eutectic recalescence


Graphite eutectic temperature


Cementite eutectic temperature


Eutectic graphitization ability


Degree of undercooling


Degree of recalescence


Thermal analysis


Actual nodule count


Predicted nodule count



Authors gratefully acknowledge OCL Iron and Steel Ltd. (Amtek India) located in Bhiwadi Rajasthan, India, for permitting to conduct the experiments and providing the materials required for this study.


  1. 1.
    D.M. Stefanescu, Casting, vol. 15 (ASM Metal Handbook, Materials Park, 1992)Google Scholar
  2. 2.
    L. Riposan, M. Chisamera, V. Uta, S. Stan, R. Naro, D. Williams, Int. J. Met. 8, 65–80 (2014)Google Scholar
  3. 3.
    M.I. Onsoien, T. Skaland, Trans. Am. Foundry Soc. 109, 1–12 (2001)Google Scholar
  4. 4.
    M. Popescu, R. Zavadil, M. Sahoo, Int. J. Met. 3, 53–63 (2009)Google Scholar
  5. 5.
    K. Edalati, F. Akhlaghi, M. Nili-Ahmadabadi, J. Mater. Process. Technol. 160, 183–187 (2005). CrossRefGoogle Scholar
  6. 6.
    D.M. Stefanescu, Int. J. Met. 9, 7–22 (2016). Google Scholar
  7. 7.
    Y. Li, Q. Wang, J. Mater. Process. Technol. 161, 430–434 (2005). CrossRefGoogle Scholar
  8. 8.
    M. Bartošová, A. Pribulová, Š. Eperješi, P. Futáš, J. Cast. Mater. Eng. (2018). Google Scholar
  9. 9.
    M. Nadeem, D.M.A. Khan, K.K. Singh, Int. J. Cast Met. Res. (2018). Google Scholar
  10. 10.
    S.S. Ojo, I. Riposan, Mater. Sci. Technol. 28, 576–581 (2012). CrossRefGoogle Scholar
  11. 11.
    P. Ferro, A. Fabrizi, R. Cervo, C. Carollo, J. Mater. Process. Technol. 213, 1601–1608 (2013). CrossRefGoogle Scholar
  12. 12.
    I. Riposan, M. Chisamera, S. Stan, P. Toboc, C. Ecob, D. White, Mater. Sci. Technol. 24, 579–584 (2008). CrossRefGoogle Scholar
  13. 13.
    A.D. Sosa, M.D. Echeverría, O.J. Moncada, N. Míngolo, J.A. Sikora, J. Mater. Process. Technol. 209, 5545–5551 (2009). CrossRefGoogle Scholar
  14. 14.
    M. Nadeem, D.M.A. Khan, K.K. Singh, Int. J. Met. (2018). Google Scholar
  15. 15.
    T. Kanno, Y. Iwami, I. Kang, Int. J. Met. 11, 94–100 (2017). Google Scholar
  16. 16.
    Z. Glavaš, Š. Anita, F. Kozina, Tehnički glasnik J. 6, 145–150 (2012)Google Scholar
  17. 17.
    S.O. Seidu, I. Ripoşan, U.P.B. Sci, Bull. Ser. B Chem. Mater. Sci. 73, 241–254 (2011)Google Scholar
  18. 18.
    I. Riposan, M. Chisamera, S. Stan, M. Barstow, Int. J. Cast Met. Res. 26, 152–159 (2013). CrossRefGoogle Scholar
  19. 19.
    K.K. Singh, S.K. Sethy, Int. J. Cast Met. Res. 26, 168–175 (2013). CrossRefGoogle Scholar
  20. 20.
    A. Regordosa, N. Llorca-Isern, Int. J. Met. 11, 778–789 (2017). Google Scholar
  21. 21.
    D.M. Stefanescu, Mater. Sci. Eng. A 413–414, 322–333 (2005). CrossRefGoogle Scholar

Copyright information

© American Foundry Society 2019

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringNational Institute of TechnologySrinagarIndia
  2. 2.Department of Foundry TechnologyNational Institute of Foundry and Forge TechnologyRanchiIndia

Personalised recommendations