Advertisement

International Journal of Metalcasting

, Volume 13, Issue 3, pp 611–617 | Cite as

Effect of Molten Metal Temperature on Mold Filling in Evaporative Pattern Casting

  • Toru MaruyamaEmail author
  • Mitsuyoshi Tamaki
  • Gou Nakamura
  • Keisuke Nakamura
Article
  • 32 Downloads

Abstract

The mold filling rate during evaporative pattern casting was measured in a wide range of molten metal temperatures from 800 to 1450 °C. A polystyrene columnar foam was used as the foamed pattern, and bottom pouring was applied to design the casting. Tin alloy, copper alloy, and cast iron were used as molten metals to vary the molten metal temperature. The mold filling rate increased with increasing molten metal temperature at relatively lower temperatures. In contrast, the mold filling rate decreased with increasing molten metal temperature at high temperatures. These phenomena were verified by in situ observation.

Keywords

evaporative pattern casting mold filling molten metal temperature pattern decomposition polystyrene foam in situ observation 

References

  1. 1.
    F. Sonnenberg, Lost Foam Casting Made Simple (American Foundry Society, Schaumburg, 1992)Google Scholar
  2. 2.
    T. Kobayashi, Y. Kasuya, IMONO 64, 318–324 (1992)Google Scholar
  3. 3.
    W. Sun, H.E. Littleton, C.E. Bates, Int. J. Cast Met. Res. 16, 549–553 (2003)CrossRefGoogle Scholar
  4. 4.
    T.N. Chakherlou, Y.V. Mahdinia, A. Akbari 32, 162–169 (2011)Google Scholar
  5. 5.
    C.E. Tseng, D.R. Askeland, Trans. Am. Foundry Soc. 111, 519–527 (1992)Google Scholar
  6. 6.
    X. Yao, S. Shivkumar, Mater. Sci. Technol. 13, 841–846 (1997)CrossRefGoogle Scholar
  7. 7.
    J. Zhu, I. Ohnaka, T. Ohmichi, K. Mineshita, Y. Yoshioka, J. Jpn. Foundry Eng. Soc. 72, 715–719 (2000)Google Scholar
  8. 8.
    Y. Liu, S.I. Bakhtiyarov, R.A. Overfelt, J. Mater. Sci. 37, 2997–3003 (2002)CrossRefGoogle Scholar
  9. 9.
    J. Kuo, J. Chen, Y. Pan, W. Hwang, Mater. Trans. 44, 2169–2174 (2003)CrossRefGoogle Scholar
  10. 10.
    D.A. Caulk, M. Barone, Int. J. Metalcast. 2, 29–45 (2008)Google Scholar
  11. 11.
    D.A. Caulk, Int. J. Metalcast. 3, 7–25 (2009)CrossRefGoogle Scholar
  12. 12.
    S. Koroyasu, J. Jpn. Foundry Eng. Soc. 81, 377–383 (2009)Google Scholar
  13. 13.
    S. Koroyasu, A. Ikenaga, Mater. Trans. 53, 224–228 (2012)CrossRefGoogle Scholar
  14. 14.
    S. Koroyasu, J. Jpn. Foundry Eng. Soc. 86, 447–453 (2014)Google Scholar
  15. 15.
    S. Koroyasu, J. Jpn. Foundry Eng. Soc. 88, 192–197 (2016)Google Scholar
  16. 16.
    M. Khodai, N. Parvin, J. Mater. Proces. Technol. 206, 1–6 (2008)CrossRefGoogle Scholar
  17. 17.
    S.M.H. Mirbagheri, H. Ashuri, N. Varahram, P. Davami, Int. J. Cast Met. Res. 16, 554–565 (2003)CrossRefGoogle Scholar
  18. 18.
    T. Maruyama, K. Katsuki, T. Kobayashi, J. Jpn. Foundry Eng. Soc. 78, 53–58 (2006)Google Scholar
  19. 19.
    J. Kang, Int. J. Mater. Prod. Technol. 47, 188–199 (2013)CrossRefGoogle Scholar
  20. 20.
    T. Maruyama, G. Nakamura, M. Tamaki, K. Nakamura, Int. J. Metalcast. 11, 77–83 (2017)CrossRefGoogle Scholar
  21. 21.
    T. Kobayashi, Y. Kasuya, IMONO 64, 192–197 (1992)Google Scholar

Copyright information

© American Foundry Society 2019

Authors and Affiliations

  • Toru Maruyama
    • 1
    Email author
  • Mitsuyoshi Tamaki
    • 2
  • Gou Nakamura
    • 3
  • Keisuke Nakamura
    • 2
  1. 1.Department of Chemistry and Materials EngineeringKansai UniversitySuita-shiJapan
  2. 2.Yanmar Co. LTD.Osaka-shiJapan
  3. 3.Aishin Takaoka Co. LTD.Toyota-shiJapan

Personalised recommendations