Advertisement

Biocorrosion and Mechanical Properties of ZXM100 and ZXM120 Magnesium Alloys

  • Alper IncesuEmail author
  • Ali Gungor
Article
  • 26 Downloads

Abstract

In this study, as-cast Mg, ZXM100 (1.07Zn–0.21Ca–0.31Mn) and ZXM120 (1.01Zn–1.63Ca–0.30Mn) alloys were produced by gravity die casting method, and microstructure, phase analysis, corrosion and mechanical properties of the alloys were investigated comparatively in order to develop degradable Mg-based biomaterials with improved properties. It is observed that Ca2Mg6Zn3 phase is expected to be present in ZXM100 (1.07Zn–0.21Ca–0.31Mn) alloy totally dissolved in the α-Mg matrix after homogenization heat treatment. However, Mg2Ca phase is expected to be present in ZXM100 (1.07Zn–0.21Ca–0.31Mn) alloy partially dissolved in the α-Mg matrix. Results showed that ZXM100 alloy has a much more homogeneous structure, a better performance, higher corrosion resistance and mechanical properties than those of as-cast Mg and ZXM120 alloy. ZXM100 (0.099 mm/year) alloy has a three times slower corrosion rate than ZXM120 (0.294 mm/year) alloy. It is found that the ZXM100 alloy has closer values to the desired corrosion rate and mechanical properties as a biodegradable implant material.

Keywords

degradable biomaterials Mg–Zn–Ca–Mn alloys mechanical properties Hank’s solution 

Notes

Acknowledgements

This work was supported by the Scientific Research Projects Coordination Unit of Karabuk University. Project Number: KBU-BAP-16/2-DR-100.

Supplementary material

40962_2019_308_MOESM1_ESM.docx (420 kb)
Supplementary material 1 (DOCX 420 kb)

References

  1. 1.
    R. Radha, D. Sreekanth, Insight of magnesium alloys and composites for orthopedic implant applications—a review. J. Magnes. Alloys 5, 286–312 (2017)CrossRefGoogle Scholar
  2. 2.
    S. Agarwal, J. Curtin, B. Duffy, S. Jaiswal, Biodegradable magnesium alloys for orthopaedic applications: a review on corrosion, biocompatibility and surface modifications. Mater. Sci. Eng., C 68, 948–963 (2016)CrossRefGoogle Scholar
  3. 3.
    E. Menthe, A. Bulak, J. Olfe, A. Zimmermann, K.-T. Rie, Improvement of the mechanical properties of austenitic stainless steel after plasma nitriding. Surf. Coat. Technol. 133, 259–263 (2000)CrossRefGoogle Scholar
  4. 4.
    D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, T. Yashiro, Design and mechanical properties of new β type titanium alloys for implant materials. Mater. Sci. Eng., A 243, 244–249 (1998)CrossRefGoogle Scholar
  5. 5.
    M. Niinomi, Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng., A 243, 231–236 (1998)CrossRefGoogle Scholar
  6. 6.
    D.A. Bridgeport, W.A. Brantley, P.F. Herman, Cobalt-chromium and nickel-chromium alloys for removable prosthodontics, Part 1: mechanical properties. J. Prosthodont. 2, 144–150 (1993)CrossRefGoogle Scholar
  7. 7.
    M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27, 1728–1734 (2006)CrossRefGoogle Scholar
  8. 8.
    A. Francis, Y. Yang, S. Virtanen, A.R. Boccaccini, Iron and iron-based alloys for temporary cardiovascular applications. J. Mater. Sci. Mater. Med. 26, 138 (2015)CrossRefGoogle Scholar
  9. 9.
    H. Hermawan, D. Dubé, D. Mantovani, Degradable metallic biomaterials: design and development of Fe–Mn alloys for stents. J. Biomed. Mater. Res. A 93, 1–11 (2010)Google Scholar
  10. 10.
    D. Vojtěch, J. Kubásek, J. Šerák, P. Novák, Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomater. 7, 3515–3522 (2011)CrossRefGoogle Scholar
  11. 11.
    H. Ibrahim, A.D. Klarner, B. Poorganji, D. Dean, A.A. Luo, M. Elahinia, Microstructural, mechanical and corrosion characteristics of heat-treated Mg–1.2 Zn–0.5 Ca (wt%) alloy for use as resorbable bone fixation material. J. Mech. Behav. Biomed. Mater. 69, 203–212 (2017)CrossRefGoogle Scholar
  12. 12.
    M.T. Andani, N.S. Moghaddam, C. Haberland, D. Dean, M.J. Miller, M. Elahinia, Metals for bone implants. Part 1. Powder metallurgy and implant rendering. Acta Biomater. 10, 4058–4070 (2014)CrossRefGoogle Scholar
  13. 13.
    M. Erinc, W.H. Sillekens, R. Mannens, R.J. Werkhoven, Applicability of Existing Magnesium Alloys as Biomedical Implant Materials (Magnesium Technology Conference, San Francisco, CA, USA, 2009), pp. 209–214Google Scholar
  14. 14.
    Y. Chen, Z. Xu, C. Smith, J. Sankar, Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 10, 4561–4573 (2014)CrossRefGoogle Scholar
  15. 15.
    X. Gu, Y. Zheng, Y. Cheng, S. Zhong, T. Xi, In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials 30, 484–498 (2009)CrossRefGoogle Scholar
  16. 16.
    M.M. Avedesian, H. Baker, ASM Specialty Handbook: Magnesium and Magnesium Alloys (ASM International, Novelty, 1999)Google Scholar
  17. 17.
    S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, H. Tao, Y. Zhang, Y. He, Y. Jiang, Research on an Mg–Zn alloy as a degradable biomaterial. Acta Biomater. 6, 626–640 (2010)CrossRefGoogle Scholar
  18. 18.
    J. Gröbner, D. Mirkovic, M. Ohno, R. Schmid-Fetzer, Experimental investigation and thermodynamic calculation of binary Mg–Mn phase equilibria. J. Phase Equilibria Diffus. 26, 234–239 (2005)CrossRefGoogle Scholar
  19. 19.
    C. Jun, Z. Qing, L. Quanan, Microstructure and mechanical properties of AZ61 magnesium alloys with the Y and Ca combined addition. Int. J. Met. 12, 897–905 (2018)Google Scholar
  20. 20.
    S. Gavras, T. Subroto, R.H. Buzolin, N. Hort, D. Tolnai, The role of Zn additions on the microstructure and mechanical properties of Mg–Nd–Zn Alloys. Int. J. Met. 12, 428–433 (2018)Google Scholar
  21. 21.
    D.H. Cho, J.H. Nam, B.W. Lee, K.M. Cho, I.M. Park, Effect of Mn addition on grain refinement of biodegradable Mg4Zn0.5Ca alloy. J. Alloys Compd. 676, 461–468 (2016)CrossRefGoogle Scholar
  22. 22.
    F. Rosalbino, S. De Negri, A. Saccone, E. Angelini, S. Delfino, Bio-corrosion characterization of Mg–Zn–X (X = Ca, Mn, Si) alloys for biomedical applications. J. Mater. Sci. Mater. Med. 21, 1091–1098 (2010)CrossRefGoogle Scholar
  23. 23.
    H.R. Bakhsheshi-Rad, M.H. Idris, M.R. Abdul-Kadir, A. Ourdjini, M. Medraj, M. Daroonparvar, E. Hamzah, Mechanical and bio-corrosion properties of quaternary Mg–Ca–Mn–Zn alloys compared with binary Mg–Ca alloys. Mater. Des. 53, 283–292 (2014)CrossRefGoogle Scholar
  24. 24.
    E. Zhang, L. Yang, Microstructure, mechanical properties and bio-corrosion properties of Mg–Zn–Mn–Ca alloy for biomedical application. Mater. Sci. Eng., A 497, 111–118 (2008)CrossRefGoogle Scholar
  25. 25.
    D.H. Cho, B.W. Lee, J.Y. Park, K.M. Cho, I.M. Park, Effect of Mn addition on corrosion properties of biodegradable Mg–4Zn–0.5 Ca–xMn alloys. J. Alloys Compd. 695, 1166–1174 (2017)CrossRefGoogle Scholar
  26. 26.
    F. Czerwinski, The reactive element effect on high-temperature oxidation of magnesium. Int. Mater. Rev. 60, 264–296 (2015)CrossRefGoogle Scholar
  27. 27.
    L. Bichler, A. Elsayed, K. Lee, C. Ravindran, Influence of mold and pouring temperatures on hot tearing susceptibility of az91d magnesium alloy. Int. J. Met. 2, 43–54 (2008)Google Scholar
  28. 28.
    M. Pokorny, C. Monroe, C. Beckermann, L. Bichler, C. Ravindran, Prediction of hot tear formation in a magnesium alloy permanent mold casting. Int. J. Met. 2, 41–53 (2008)Google Scholar
  29. 29.
    G. Ballerini, U. Bardi, R. Bignucolo, G. Ceraolo, About some corrosion mechanisms of AZ91D magnesium alloy. Corros. Sci. 47, 2173–2184 (2005)CrossRefGoogle Scholar
  30. 30.
    J.E. Catalano, L.J. Kecskes, A Generic Metallographic Preparation Method for Magnesium Alloys. ARMY RESEARCH LAB ABERDEEN PROVING GROUND MD WEAPONS AND MATERIALS RESEARCH DIRECTORATE (2013)Google Scholar
  31. 31.
    M. German, International Centre for Diffraction Data (ICDD). Database/PDF No. 49-0335. 1984. Further reference: German M, Kovba L. Russ. J. Inorg. Chem. 30, 317 (1985)Google Scholar
  32. 32.
    ISO, B.: 6892-2, Metallic Materials Tensile Testing. Part 2: Method of Test at Elevated Temperature (Br. Stand. Inst, London, 2011)Google Scholar
  33. 33.
    Standard, A. G102-89, Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements. Annual Book of ASTM Standards, vol. 3 (ASTM International, West Conshohocken, 2006)Google Scholar
  34. 34.
    Internasional, A.: ASTM G31-72, Standard Practice for Laboratory Immersion Corrosion Testing of Metals. United State (2004)Google Scholar
  35. 35.
    B. Langelier, X. Wang, S. Esmaeili, Evolution of precipitation during non-isothermal ageing of an Mg–Ca–Zn alloy with high Ca content. Mater. Sci. Eng., A 538, 246–251 (2012)CrossRefGoogle Scholar
  36. 36.
    Y. Wang, M. Wei, J. Gao, J. Hu, Y. Zhang, Corrosion process of pure magnesium in simulated body fluid. Mater. Lett. 62, 2181–2184 (2008)CrossRefGoogle Scholar
  37. 37.
    Y. Al-Abdullat, S. Tsutsumi, N. Nakajima, M. Ohta, H. Kuwahara, K. Ikeuchi, Surface modification of magnesium by NaHCO3 and corrosion behavior in Hank’s solution for new biomaterial applications. Mater. Trans. 42, 1777–1780 (2001)CrossRefGoogle Scholar
  38. 38.
    G.Y. Li, J.S. Lian, L.Y. Niu, Z.H. Jiang, Q. Jiang, Growth of zinc phosphate coatings on AZ91D magnesium alloy. Surf. Coat. Technol. 201, 1814–1820 (2006)CrossRefGoogle Scholar
  39. 39.
    Z. Li, X. Gu, S. Lou, Y. Zheng, The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials 29, 1329–1344 (2008)CrossRefGoogle Scholar
  40. 40.
    N.N. Aung, W. Zhou, Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy. Corros. Sci. 52, 589–594 (2010)CrossRefGoogle Scholar
  41. 41.
    C. Scharf, A. Ditze, A. Shkurankov, E. Morales, C. Blawert, W. Dietzel, K.-U. Kainer, Corrosion of AZ 91 secondary magnesium alloy. Adv. Eng. Mater. 7, 1134–1142 (2005)CrossRefGoogle Scholar
  42. 42.
    Z. Shi, M. Liu, A. Atrens, Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation. Corros. Sci. 52, 579–588 (2010)CrossRefGoogle Scholar

Copyright information

© American Foundry Society 2019

Authors and Affiliations

  1. 1.Metallurgical and Materials EngineeringKarabuk UniversityKarabukTurkey

Personalised recommendations