Advertisement

Grain Refinement of Al–2%Cu Alloy Using Vibrating Mold

  • Yasuo Yoshitake
  • Kaoru Yamamoto
  • Nobuya Sasaguri
  • Hidenori Era
Article
  • 17 Downloads

Abstract

Vibration effects on grain refinement in aluminum alloy were investigated by mechanically vibrating metal mold during solidification. Results show that both the frequency and the half amplitude affected the grain refinement, decreasing the average grain size. We hypothesized that the average grain size can be estimated from the excitation force consolidating them. To clarify grain refinement mechanisms, experiments were conducted with different vibration starting times and different vibration periods. Moreover, a water model experiment was conducted using ammonium chloride solution. Both the equiaxed grain size and the columnar grain length were reduced by mold vibration before pouring, irrespective of the vibration period. However, when the mold was vibrated at 15 s after pouring, the columnar grain length increased. Moreover, the equiaxed grain size increased greatly. Water model experiments showed that a vibrated mold made of polycarbonate and aluminum alloy produced many crystals near the mold wall and filled the mold by vibration and induced convection. These results clarified that starting vibration before solidification is important for grain refinement.

Keywords

aluminum alloy excitation force grain refinement solidification vibration 

References

  1. 1.
    N.J. Petch, Philos. Mag. 3, 1089 (1958)CrossRefGoogle Scholar
  2. 2.
    A. Waguri, Youketsu Kikaikousakuhou (Youkendo) 36, 58 (1975)Google Scholar
  3. 3.
    R.J. Kissling, J.F. Wallace, Foundry 91,5,142 (1963)Google Scholar
  4. 4.
    S. Terai, J. JILM 24, 42 (1974)CrossRefGoogle Scholar
  5. 5.
    K. Oda, S. Komarov, Y. Ishiwata, J. JILM 61, 4,149 (2011)CrossRefGoogle Scholar
  6. 6.
    Y. Osawa, G. Arakane, S. Takamori, S. Sato, O. Ohashi, J. JFS 71, 98 (1999)Google Scholar
  7. 7.
    Y. Osawa, S. Takamori, G. Arakane, O. Umezawa, S. Sato, O. Ohashi, J. JFS 72, 187 (2000)Google Scholar
  8. 8.
    K. Taga, Y. Fukui, Y. Tsunekawa, M. Okumiya, J. JFS 81, 469 (2009)Google Scholar
  9. 9.
  10. 10.
    G.I. Eskin, Ultrasonic Treatment of Light Alloy Melts (CRC Press, Boca Raton, 1998)CrossRefGoogle Scholar
  11. 11.
    L. Zhang, D.G. Eskin, L. Kategerman, J. Mater. Sci. 46, 5252 (2011)CrossRefGoogle Scholar
  12. 12.
    G. Wang, M.S. Dargusch, M. Qian, D.G. Eskin, D.H. Stjohn, J. Cryst. Growth 408, 119 (2014)CrossRefGoogle Scholar
  13. 13.
    K. Miwa, J. JILM 52, 611 (2002)CrossRefGoogle Scholar
  14. 14.
    T. Momono, K. Ikawa, J. JILM 29, 240 (1979)CrossRefGoogle Scholar
  15. 15.
    S. Nishida, H. Era, F. Otsubo, J. JFS 84, 526 (2012)Google Scholar
  16. 16.
    K. Hoshino, K. Kamiyama, T. Sakai, T. Kurosawa, T. Otani, IMONO 66, 217 (1994)Google Scholar
  17. 17.
    N. Omura, Y. Murakami, M. Li, T. Tamura, K. Miwa, H. Hurukawa, J. JFS 81, 536 (2009)Google Scholar
  18. 18.
    N. Omura, Y. Murakami, M. Li, T. Tamura, K. Miwa, H. Hurukawa, M. Harada, M. Yokoi, J. JFS 81, 295 (2009)Google Scholar
  19. 19.
    K. Hoshino, T. Sakai, T. Kurosawa, S. Ito, T. Otani, IMONO 61, 581 (1989)Google Scholar
  20. 20.
    K. Hoshino, Y. Nagadome, T. Sakai, T. Kurosawa, T. Otani, J. JFS 68, 124 (1996)Google Scholar
  21. 21.
    T. Ohmi, M. Kudo, M. Iguchi, J. JFS 77, 542 (2005)Google Scholar
  22. 22.
    M.C. Mehta, S.K. Chaudhury, D. Mandal, IJMC (2018).  https://doi.org/10.1007/s40962-018-0271-y CrossRefGoogle Scholar
  23. 23.
    E.A. Hiedemann, J. Acoust. Soc. Am. 5, 831 (1954)CrossRefGoogle Scholar
  24. 24.
    R.S. Richards, W. Rostoker, Trans. ASM 48, 886 (1956)Google Scholar
  25. 25.
    A.H. Freedman, J.F. Wallace, Trans. AFS 65, 578 (1956)Google Scholar
  26. 26.
    F.C. Langenberg, G. Pestel, C.R. Honeycutt, Trans. TMS-AIME 221, 993 (1961)Google Scholar
  27. 27.
    W.C. Johnston, G.R. Kotler, S. O’Hara, H.V. Ashcom, W.A. Tiller, Trans. TMS-AIME 233, 1856 (1965)Google Scholar
  28. 28.
    D. Eskin, N. Alba-Baena, T. Pabel, M. da Silva, Mater. Sci. Technol. 31, 79 (2014)CrossRefGoogle Scholar
  29. 29.
    T. Otani, T. Sakai, K. Hoshino, T. Kurosawa, IMONO 59, 590 (1987)Google Scholar
  30. 30.
    Y. Osawa, A. Sato, T. Namai, G. Arakane, IMONO 65, 288 (1993)Google Scholar
  31. 31.
    A. Nishimura, Y. Kawano, J. JILM 25, 193 (1975)CrossRefGoogle Scholar
  32. 32.
    Y. Osawa, S. Takamori, T. Kimura, K. Minagawa, J. JFS 79, 738 (2007)Google Scholar
  33. 33.
    Y. Osawa, A. Sato, J. JFS 72, 733 (2000)Google Scholar
  34. 34.
    H. Yasuda, K. Nogita, Y. Yamamoto, T. Nagira, M. Yoshiya, K. Uesugi, K. Umetani, A. Takeuchi, Y. Suzuki, J. JILM 61, 736 (2011)CrossRefGoogle Scholar
  35. 35.
    D. Ruvalcaba, R.H. Mathiesen, D.G. Eskin, L. Arnberg, L. Katgerman, Acta Mater. 55, 4287 (2007)CrossRefGoogle Scholar

Copyright information

© American Foundry Society 2018

Authors and Affiliations

  • Yasuo Yoshitake
    • 1
  • Kaoru Yamamoto
    • 2
  • Nobuya Sasaguri
    • 2
  • Hidenori Era
    • 3
  1. 1.Support Center of Education and ResearchNational Institute of Technology, Kurume CollegeKurumeJapan
  2. 2.Department of Materials System EngineeringNational Institute of Technology, Kurume CollegeKurumeJapan
  3. 3.Faculty of EngineeringKyushu Institute of TechnologyKitakyushuJapan

Personalised recommendations