Advertisement

International Journal of Metalcasting

, Volume 13, Issue 3, pp 641–652 | Cite as

Sliding Wear of the Ti-Reinforced Al Matrix Bi-metal Composite: A Potential Replacement to Conventional SiC-Reinforced Composites for Automotive Application

  • Ridvan GecuEmail author
  • Ahmet Karaaslan
Article
  • 31 Downloads

Abstract

The automotive industry needs the combination of lightweight and high-strength materials which can be achieved by using aluminum matrix composites (AMCs). Production problems and expensiveness of conventional ceramic reinforced AMCs can be overcome by the use of metals as reinforcements. This study intends to demonstrate the potential of commercially pure titanium-reinforced A356 alloy matrix bi-metal composite for replacement of SiC-reinforced AMCs in automobile components. Ti-reinforced and SiC-reinforced A356 matrix composites were separately manufactured by melt infiltration casting. Porous monoblock preforms of Ti and SiC were infiltrated by molten A356 under vacuum atmosphere. Ball-on-disk tests were performed by using a 3-mm-diameter Al2O3 ball to determine relatively severe wear behavior of composites after production. The Ti-reinforced AMC showed better performance against wear under favor of TiAl3 formation at Al/Ti interface. Moreover, wetting problems occurred in the SiC-reinforced AMC, while good metallurgical and mechanical bonding was achieved in the Ti-reinforced sample. The feasibility of environmentally-friendly low-cost manufacturing of the Ti-reinforced A356 alloy matrix bi-metal composite has been demonstrated.

Keywords

bi-metal composite wear A356 alloy commercially pure titanium SiC particles automobile components 

Notes

Acknowledgements

This research was supported by Yildiz Technical University Scientific Research Projects Coordination Department with the project number of FDK-2017-3241.

References

  1. 1.
    R.L. Deuis, C. Subramanian, J.M. Yellup, Compos. Sci. Technol. 57, 415 (1997)CrossRefGoogle Scholar
  2. 2.
    D.L. Zalensas, Aluminum Casting Technology, 2nd edn. (American Foundry Society, Schaumburg, 1997)Google Scholar
  3. 3.
    M. Tan, Q. Xin, Z. Li, B.Y. Zong, J. Mater. Sci. 6, 2045 (2001)CrossRefGoogle Scholar
  4. 4.
    S.V. Prasad, R. Asthana, Tribol. Lett. 17, 445 (2004)CrossRefGoogle Scholar
  5. 5.
    B. Stojanović, L. Ivanović, Teh. Vjesn. - Tech. Gaz. 22, 247 (2015)CrossRefGoogle Scholar
  6. 6.
    S. Suresha, B.K. Sridhara, Mater. Des. 31, 1804 (2010)CrossRefGoogle Scholar
  7. 7.
    P. Rohatgi, JOM 43, 10 (1991)CrossRefGoogle Scholar
  8. 8.
    A. Hosseini Monazzah, H. Pouraliakbar, R. Bagheri, S.M. Seyed Reihani, Compos. Part B Eng. 125, 49 (2017)CrossRefGoogle Scholar
  9. 9.
    S. Bao, K. Tang, A. Kvithyld, T. Engh, M. Tangstad, Trans. Nonferrous Met. Soc. China English Ed. 22, 1930 (2012)CrossRefGoogle Scholar
  10. 10.
    J. Park, J. Lee, I. Jo, S. Cho, S.K. Lee, S.B. Lee, H.J. Ryu, S.H. Hong, Surf. Coat. Technol. 307, 399 (2016)CrossRefGoogle Scholar
  11. 11.
    X.Y. Nie, J.C. Liu, H.X. Li, Q. Du, J.S. Zhang, L.Z. Zhuang, Mater. Des. 63, 142 (2014)CrossRefGoogle Scholar
  12. 12.
    S.K. Thakur, M. Gupta, Compos. Part A Appl. Sci. Manuf. 38, 1010 (2007)CrossRefGoogle Scholar
  13. 13.
    S. Hwang, C. Nishimura, P.G. McCormick, Scr. Mater. 44, 2457 (2001)CrossRefGoogle Scholar
  14. 14.
    S.F. Hassan, M. Gupta, J. Alloys Compd. 345, 246 (2002)CrossRefGoogle Scholar
  15. 15.
    P. Pérez, G. Garcés, P. Adeva, Compos. Sci. Technol. 64, 145 (2004)CrossRefGoogle Scholar
  16. 16.
    A.R.E. Singer, S. Ozbek, Powder Metall. 28, 72 (1985)CrossRefGoogle Scholar
  17. 17.
    M. Gupta, S. Ling, Mater. Des. 18, 139 (1998)CrossRefGoogle Scholar
  18. 18.
    T. Clyne, P. Withers, An Introduction to Metal Matrix Composites (Cambridge University Press, Cambridge, 1995)Google Scholar
  19. 19.
    G.H. Wu, J. Su, H.S. Gou, Z.Y. Xiu, L.T. Jiang, J. Mater. Sci. 44, 4776 (2009)CrossRefGoogle Scholar
  20. 20.
    X. Wang, G. Chen, B. Li, G. Wu, D. Jiang, J. Mater. Sci. 44, 4303 (2009)CrossRefGoogle Scholar
  21. 21.
    J.C. Schuster, M. Palm, J. Phase Equilib. Diffus. 27, 255 (2006)CrossRefGoogle Scholar
  22. 22.
    S. Djanarthany, J.C. Viala, J. Bouix, Mater. Chem. Phys. 72, 301 (2001)CrossRefGoogle Scholar
  23. 23.
    Y. Milman, D. Miracle, S. Chugunova, Intermetallics 9, 839 (2001)CrossRefGoogle Scholar
  24. 24.
    B. Guo, S. Ni, R. Shen, M. Song, Mater. Sci. Eng., A 639, 269 (2015)CrossRefGoogle Scholar
  25. 25.
    G. Wu, Y. Liu, Z. Xiu, L. Jiang, W. Yang, Rare Met. 29, 98 (2010)CrossRefGoogle Scholar
  26. 26.
    G.A. Gegel, D.J. Weiss, Int. J. Met. 1, 57 (2007)Google Scholar
  27. 27.
    H. Nakae, Y. Hiramoto, Int. J. Met. 5, 23 (2011)Google Scholar
  28. 28.
    A. Loukus, J. Loukus, Int. J. Met. 5, 57 (2011)Google Scholar
  29. 29.
    J.E. Allison, G.S. Cole, JOM 45, 19 (1993)CrossRefGoogle Scholar
  30. 30.
    R. Gecu, A. Karaaslan, Int J Met (2018).  https://doi.org/10.1007/s40962-018-0253-0 Google Scholar
  31. 31.
    R. Gecu, A. Karaaslan, J. Tribol. (2018).  https://doi.org/10.1115/1.4041126 Google Scholar
  32. 32.
    S. Dwivedi, S. Sharma, R. Mishra, Adv. Mater. Manuf. 2, 81 (2014)Google Scholar
  33. 33.
    R. Gecu and A. Karaaslan, Tribol. Lett. 65, (2017)Google Scholar
  34. 34.
    S.L. Sin, D. Dubé, Mater. Sci. Eng., A 386, 34 (2004)CrossRefGoogle Scholar
  35. 35.
    S. Sawla, S. Das, Wear 257, 555 (2004)CrossRefGoogle Scholar
  36. 36.
    J. Hashim, L. Looney, M.S.J. Hashmi, J. Mater. Process. Technol. 92–93, 1 (1999)CrossRefGoogle Scholar
  37. 37.
    N.P. Suh, Wear 25, 111 (1973)CrossRefGoogle Scholar
  38. 38.
    M. Ramachandra, K. Radhakrishna, Mater. Sci. 24, 333 (2006)Google Scholar
  39. 39.
    L. Tang, C. Gao, J. Huang, H. Zhang, W. Chang, Tribol. Int. 66, 165 (2013)CrossRefGoogle Scholar

Copyright information

© American Foundry Society 2018

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringYildiz Technical UniversityIstanbulTurkey

Personalised recommendations