Advertisement

International Journal of Metalcasting

, Volume 13, Issue 3, pp 504–518 | Cite as

Two Inoculation Methods for Refining As-Cast Grain Structure in Austenitic 316L Steel

  • Dustin A. Arvola
  • Simon N. LekakhEmail author
  • Ronald J. O’Malley
  • Laura N. Bartlett
Article
  • 66 Downloads

Abstract

Two inoculation methods were utilized to introduce titanium nitride (TiN) particles into an AISI 316L steel melt to refine the as-cast grain structure during solidification. The design of the experimental melt treatments and grain refining additions was performed using thermodynamic simulations. The first inoculation method is based on in situ formation of heterogeneous nuclei by TiN co-precipitation on preexisting Mg–Al spinel inclusions. This method included a two-stage melt treatment using spinel forming additions followed by an addition of titanium in the ladle just prior to pouring. The second inoculation method used a newly developed master alloy that contains TiN precipitates which was added in the ladle during furnace tapping. In this method, protective conditions to prevent full dissolution of the TiN nuclei before the onset of solidification were determined by thermodynamic simulations. Grain refinement of the cast macrostructure was observed with both methods. The in situ method provided finer equiaxed grains than the master alloy method, while a thicker zone with columnar grains next to the chill was observed. A scanning electron microscope (SEM) with automated feature analysis was used to quantify the resulting inclusions. The master alloy method eliminated the need for spinel, gave better control of the amount and size of heterogeneous nuclei, and reduced clustering tendency in comparison with the in situ method. However, the in situ formed nuclei method is more effective to refine grain size. The effects of contact angle and nuclei surface geometry on the activity of heterogeneous nucleation were discussed. It is proposed that clustering TiN particles provides numerous sharp, concave corners which favors the heterogeneous nucleation of austenite grains. This is illustrated by SEM images of extracted TiN particles and electron backscatter diffraction analysis of grain orientation.

Keywords

austenitic stainless steel solidification heterogeneous nucleation titanium nitride grain refinement 

Notes

Acknowledgements

The authors would like to thank the industrial sponsors of the Kent D. Peaslee Steel Manufacturing Research Center for funding this research.

References

  1. 1.
    H. Hossam, JMMCE 2(5), 428–469 (2014)CrossRefGoogle Scholar
  2. 2.
    M. Maalekian, The Effects of Alloying Elements on Steels (I), Report (Graz University of Technology, Austria, 2007)Google Scholar
  3. 3.
    J.F. Wallace, JOM 15(5), 372–376 (1963)CrossRefGoogle Scholar
  4. 4.
    Z. Liu, Metall. Mater. Trans. A 48(10), 4755–4776 (2017)CrossRefGoogle Scholar
  5. 5.
    Y. Itoh, T. Okajima, K. Tashiro, ISIJ Int. 21(6), 397–404 (1981)CrossRefGoogle Scholar
  6. 6.
    A. Abugh, I.K. Kuncy, JESR 19(1), 7–12 (2013)Google Scholar
  7. 7.
    X.R. Chen, H. Zhong, C.J. Song, Q.J. Jie, Adv. Mater. Res. 683, 626–630 (2013)CrossRefGoogle Scholar
  8. 8.
    H. Takeuchi et al., ISIJ Int. 21(2), 109–116 (1981)CrossRefGoogle Scholar
  9. 9.
    Y. Itoh, T. Okajima, H. Maede, K. Tashiro, ISIJ Int. 22(3), 223–229 (1982)CrossRefGoogle Scholar
  10. 10.
    X.Q. Wu et al., JMEP 8(5), 525–530 (1999)CrossRefGoogle Scholar
  11. 11.
    S. Zhou, H. Li, J. Rao, China Foundry 4(3), 198–201 (2007)Google Scholar
  12. 12.
    S. Zhou et al., J. Cent. South Univ. Technol. 16(3), 360–364 (2009)CrossRefGoogle Scholar
  13. 13.
    Y. Xu, E. Wang, Z. Li, A. Deng, J. Iron. Steel Res. Int. 24(5), 483–489 (2017)CrossRefGoogle Scholar
  14. 14.
    B. Chalmers, Principles of Solid (Wiley, Hoboken, 1964), pp. 62–90Google Scholar
  15. 15.
    M. Flemings, Solidification Processing (McGraw-Hill, New York City, 1974), pp. 290–327Google Scholar
  16. 16.
    W. Kurz, D. Fisher, Fundamentals of Solidification (Trans. Tech. Publications, Zürich, 1986), pp. 21–45Google Scholar
  17. 17.
    B. Bramfitt, Metall. Trans. 1(7), 1987–1995 (1970)CrossRefGoogle Scholar
  18. 18.
    S.N. Lekakh, N.I. Medvedeva, Comput. Mater. Sci. 106, 149–154 (2015)CrossRefGoogle Scholar
  19. 19.
    N. Tyas, A Dissertation at the University of Cambridge, 2000Google Scholar
  20. 20.
    C. Van der Eijk, J. Walmsley, in ISS Electric Furnace Conference (2001), pp. 51–60Google Scholar
  21. 21.
    D. Siafakas et al., Metals 7(6), 186 (2017)CrossRefGoogle Scholar
  22. 22.
    S.N. Lekakh et al., Metall. Mater. Trans. B 48(1), 406–419 (2017)CrossRefGoogle Scholar
  23. 23.
    T. Inada, A Master’s Thesis at Massachusetts Institute of Technology, 1999Google Scholar
  24. 24.
    D. Siafakas, Thesis at Jönköping University, 2017Google Scholar
  25. 25.
    M. Andersson et al., Technical Report, European Commission, 2011Google Scholar
  26. 26.
    R. Tuttle, Technical Report, Office of Naval Research, 2009Google Scholar
  27. 27.
    F. Pan et al., Materials 9(6), 1–19 (2016)CrossRefGoogle Scholar
  28. 28.
    R. Tuttle, Technical Report, Office of Naval Research, 2010Google Scholar
  29. 29.
    C. Van der Eijk et al., ISIJ Int. 49(7), 1046–1050 (2009)CrossRefGoogle Scholar
  30. 30.
    H. Suito, ISIJ Int. 41(7), 748–756 (2001)CrossRefGoogle Scholar
  31. 31.
    A.L. Greer, Philos. Trans. R. Soc. Lond. A 361, 479–495 (2003)CrossRefGoogle Scholar
  32. 32.
    E.S. Dahle, A Master Thesis at the Norwegian University of Science and Technology, 2011Google Scholar
  33. 33.
    M. Mizumoto, S. Sasaki, T. Ohgai, A. Kagawa, Int. J. Cast Met. Res. 21(1–4), 49–55 (2008)CrossRefGoogle Scholar
  34. 34.
    C. Wang et al., Metall. Mater. Trans. A 41(7), 1616–1620 (2010)CrossRefGoogle Scholar
  35. 35.
    S.N. Lekakh, R. O’Malley, M. Emmendorfer, B. Hrebec, ISIJ Int. 57(5), 824–832 (2017)CrossRefGoogle Scholar
  36. 36.
    Factsage 7.0 software (GTT-Technologies, Aachen), p. 811. www.gtt-technologies.de. Accessed 9 Jan 2018
  37. 37.
    D. Kruger, A. Garbers-Craig, Metall. Mater. Trans. B 48(3), 1514–1532 (2017)CrossRefGoogle Scholar
  38. 38.
    X. Yin et al., Metall. Mater. Trans. B 47(6), 3274–3284 (2016)CrossRefGoogle Scholar
  39. 39.
    Thermo-Calc 2016a software (Thermo-Calc Software Inc., Sweden), www.thermocalc.com
  40. 40.
    M. Harris et al., in AISTech Proceedings (2015), pp. 3315–3325Google Scholar
  41. 41.
    S.N. Lekakh, IJMC 11(4), 743–748 (2017)Google Scholar
  42. 42.
    M. Qian, Acta Mater. 55(3), 943–953 (2007)CrossRefGoogle Scholar
  43. 43.
    D. Janis, R. Inoue, A. Karasev, P. Jönsson, Adv. Mater. Sci. Eng. 5(2), 1–7 (2014)CrossRefGoogle Scholar
  44. 44.
    SE-FIT Software (Portland State University), www.se-fit.com
  45. 45.
    T.E. Quested, A.L. Greer, Acta Mater. 53(9), 2683–2692 (2005)CrossRefGoogle Scholar

Copyright information

© American Foundry Society 2018

Authors and Affiliations

  • Dustin A. Arvola
    • 1
  • Simon N. Lekakh
    • 1
    Email author
  • Ronald J. O’Malley
    • 1
  • Laura N. Bartlett
    • 1
  1. 1.Materials Science and Engineering DepartmentMissouri University of Science and TechnologyRollaUSA

Personalised recommendations