International Journal of Metalcasting

, Volume 13, Issue 1, pp 201–212 | Cite as

Microstructure and Properties of Vacuum Cast Sc-Containing Be–Al Alloys

  • Liangbo YuEmail author
  • Zhenhong Wang
  • Jian Wu
  • Xiandong Meng
  • Xinchun Lai


The cross-sectional microstructure and mechanical properties of vacuum suction cast beryllium–aluminum (Be–Al) alloy rods with different additions of scandium (Sc) were firstly investigated. The vacuum suction casting process was numerically simulated with the filling time of 0.1 s and solidification rate of 870 °C/s roughly obtained. The sub-rapid solidification process rendered no amorphous phases but three kinds of distinguished microstructures, of which the crystallization type and grain size of Be in the central part varied with increasing additions of Sc. The Al3Sc phase could only exist with a high content of Sc. Rapid solidification hindered macro-segregation and resulted in secondary phases with homogeneous compositions. The 1.0 wt% addition of Sc caused microscopic shrinkage porosities in the center of alloy rod by changing temperature gradient at the liquid/solid interface front and crystallization interval. Central areas with refined microstructure had the highest macro-hardness; stiffer Sc-containing particles further increased the mechanical performances of alloys.


Be–Al alloy microstructure mechanical properties vacuum suction casting Sc-alloying 



We express our sincere gratitude to Hefei Ji, Qinguo Wang, and Yong Liu for their assistance with instrumental characterization.


  1. 1.
    D.R. Floyd, J.N. Lowe, Beryllium Science and Technology (Springer, Berlin, 2014)Google Scholar
  2. 2.
    F.C. Grensing, H. Don, Mechanical and thermal properties of aluminum–beryllium alloy AM162. Adv. Powder. Metall. Part. Mater. 3, 13 (1995)Google Scholar
  3. 3.
    C. Houska, Beryllium in aluminium and magnesium alloys. Met. Mater. 4(2), 100 (1988)Google Scholar
  4. 4.
    J.F. Sullivan, A.C. Haramis, Lockalloy Be-38Al. Mater. Charact. ADA041284, 106 (1977)Google Scholar
  5. 5.
    T.P. Taylor, M. Ding, D.S. Ehler, T.M. Foreman, J.P. Kaszuba, N.N. Sauer, Beryllium in the environment: a review. J. Environ. Sci. Health 38(2), 439 (2003)CrossRefGoogle Scholar
  6. 6.
    L.V. Molchanova, V.N. Ilyushinb, Alloying of aluminum–beryllium alloys. Russ. Metal. (Metally) 2013(1), 71 (2013)CrossRefGoogle Scholar
  7. 7.
    W.C. Oliver, Characterization of rapidly solidified Al–Be–Li and Al–Be ribbons. Scr. Metall. 21, 1429 (1987)CrossRefGoogle Scholar
  8. 8.
    I.N. Fridlyander, High-modulus aluminum alloys with beryllium and magnesium. Met. Sci. Heat Treat. 45(9–10), 348 (2003)CrossRefGoogle Scholar
  9. 9.
    F. Zupanič, T. Bončina, A. Križman, W. Grogger, C. Gspan, B. Markoli, S. Spaić, Quasicrystalline phase in melt-spun Al–Mn–Be ribbons. J. Alloy. Compd. 452(2), 343 (2008)CrossRefGoogle Scholar
  10. 10.
    L. Yu, J. Wang, F. Qu, M. Wang, W. Wang, Y. Bao, X. Lai, Effects of scandium addition on microstructure, mechanical and thermal properties of cast Be–Al alloy. J. Alloy. Compd. 737, 655 (2018)CrossRefGoogle Scholar
  11. 11.
    L. Yu, J. Wang, Z. Wang, F. Qu, F. Zhou, X. Lai, Sc and Sc-Zr effects on microstructure and mechanical properties of Be–Al alloy. Mater. Sci. Technol. 34(4), 480 (2018)CrossRefGoogle Scholar
  12. 12.
    D.H. Carter, A.C. McGeorge, L.A. Jacobson, P.W. Stanek, Age hardening in beryllium–aluminum–silver alloys. Acta Mater. 44(11), 4311 (1996)CrossRefGoogle Scholar
  13. 13.
    J. Larose, J.J. Lewandowski, Pressure effects on flow and fracture of Be–Al alloys. Metal. Mater. Trans. A 33(11), 3555 (2002)CrossRefGoogle Scholar
  14. 14.
    S. Ceresara, P. Fiorini, Influence of cold-work on clustering in Al–Be alloys. Phil. Mag. 19(157), 205 (1969)CrossRefGoogle Scholar
  15. 15.
    L.V. Molchanova, Effect of scandium on the phase composition and mechanical properties of ABM-type alloys. Russ. Metal. (Metally) 2010(9), 815 (2010)CrossRefGoogle Scholar
  16. 16.
    B.A. Mueller, L.E. Tanner, J.H. Perepezko, Microstructure development in undercooled Al–Be powders. Mater. Sci. Eng. A 150(1), 123 (1992)CrossRefGoogle Scholar
  17. 17.
    S.L. Sobolev, Local non-equilibrium diffusion model for solute trapping during rapid solidification. Acta Mater. 60(6–7), 2711 (2012)CrossRefGoogle Scholar
  18. 18.
    Y. Zhou, L. Bian, G. Chen, L. Wang, W. Liang, Influence of Ca addition on microstructural evolution and mechanical properties of near-eutectic MgeLi alloys by copper-mold suction casting. J. Alloy. Compd. 664, 85 (2016)CrossRefGoogle Scholar
  19. 19.
    W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564 (1992)CrossRefGoogle Scholar
  20. 20.
    ProCAST™ User’s Manual & Technical Reference, America: ESI Software Inc, 2007Google Scholar
  21. 21.
    Z.H. Wang, J. Wang, L.B. Yu, J. Wu, M. Wang, B. Su, Numerical simulation and process optimization of vacuum investment casting for Be–Al Alloys. Int. J. Metalcasting (2018). Google Scholar
  22. 22.
    H. Li, L. Liu, J. Xu, Modeling and simulation of Fe-based metallic glass alloys preparation process. Mater. Manuf. Processes 24(5), 554 (2009)CrossRefGoogle Scholar
  23. 23.
    H. Li, J. Yan, J. Xu, Numerical simulation of Zr66Al8Cu7Ni19 preparation process. Mater. Manuf. Processes 23(5), 533 (2008)CrossRefGoogle Scholar
  24. 24.
    Z. Chen, H. Zhang, Y. Lei, Secondary solidification behaviour of AA8006 alloy prepared by suction casting. J. Mater. Sci. Technol. 27(9), 769 (2011)CrossRefGoogle Scholar
  25. 25.
    I. Barin, Thermochemical Data of Pure Substances (Weinheim (Federal Republic of Germany), VCH Verlagsgesellschaft mbH, 1995), p. 1885CrossRefGoogle Scholar
  26. 26.
    T.G. Nieh, C.A. Henshall, J. Wadsworth, High-temperature properties of rapidly solidified Al–Be alloys. J. Mater. Sci. 22(12), 4411 (1987)CrossRefGoogle Scholar
  27. 27.
    D.C.V. Aken, H.L. Fraser, The microstructures of rapidly solidified hyper-eutectic Al–Be alloys. Acta Metall. 33(6), 963 (1985)CrossRefGoogle Scholar
  28. 28.
    P. Pawlik, K. Pawlik, A. Przybyl, Investigation of the cooling rate in the suction casting process. Rev. Adv. Mater. Sci. 18(1), 81 (2008)Google Scholar
  29. 29.
    W. Kurz, D.J. Fisher, Fundamentals of solidification (Trans Tech Publications Ltd, Aedermannsdorf, 1989)Google Scholar
  30. 30.
    Y. Wang, J. Yang, Y. Bao, Effects of non-metallic inclusions on machinability of free-cutting steels investigated by nano-indentation measurements. Metal. Mater Trans. A 46(1), 281 (2015)CrossRefGoogle Scholar
  31. 31.
    J.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, C. Fiori, E. Lifshin, Scanning Electron Microscopy and X-Ray Microanalysis: A text for biologists, materials scienctists and geologists (Plenum Press, New York, 1981), p. 101CrossRefGoogle Scholar
  32. 32.
    T. Öz, E. Karaköse, M. Keskin, Impact of beryllium additions on thermal and mechanical properties of conventionally solidified and melt-spun Al–4.5 wt%Mn–x wt%Be (x = 0, 1, 3, 5) alloys. Mater. Des. 50, 399 (2013)CrossRefGoogle Scholar
  33. 33.
    F. Zupanič, T. Bončina, B. Šuštaršič, I. Anžel, B. Markoli, Microstructure of Al–Mn–Be melt-spun ribbons. Mater. Charact. 59(9), 1245 (2008)CrossRefGoogle Scholar
  34. 34.
    T. Koziel, Estimation of cooling rates in suction casting and copper-mould casting processes. Arch. Metall. Mater. 60(2), 767 (2015)CrossRefGoogle Scholar
  35. 35.
    M.J. Bermingham, S.D. McDonald, D.H. StJohn, M.S. Dargusch, Beryllium as a grain refiner in titanium alloys. J. Alloy. Compd. 481(1–2), L20 (2009)CrossRefGoogle Scholar
  36. 36.
    E. Niyama, T. Uchida, M. Morikawa, S. Saito, A method of shrinkage prediction and its application to steel casting practice. Int. Cast Metals J. 6(2), 16 (1981)Google Scholar
  37. 37.
    K.D. Carlson, C. Beckermann, Prediction of shrinkage pore volume fraction using a dimensionless Niyama criterion. Metal. Mater. Trans. A 40(1), 163 (2009)CrossRefGoogle Scholar
  38. 38.
    X. Wang, J. Rong, Y. Yao, Y. Zhang, Y. Zhong, J. Feng, X. Yu, Z. Zhan, La, doping inhibits stress production at the grain boundaries in Ni–WC coating. J. Alloy. Compd. 753, 688 (2018)CrossRefGoogle Scholar
  39. 39.
    X. Yu, J. Rong, Z. Zhan, Z. Liu, J. Liu, Effects of grain size and thermodynamic energy on the lattice parameters of metallic nanomaterials. Mater. Des. 83, 159 (2015)CrossRefGoogle Scholar
  40. 40.
    Kurz W., Giovanola B. and Trivedi R., Theory of microstructural development during rapid solidification, Acta Metallurgica, 1986, 34(5)Google Scholar
  41. 41.
    X. Yu, Z. Zhan, The effects of the size of nanocrystalline materials on their thermodynamic and mechanical properties. Nanoscale Res. Lett. 9, 516 (2014)CrossRefGoogle Scholar
  42. 42.
    D.H. Carter, Deformation of a beryllium-aluminum composite [Dissertation] (University of California, United States, 2000)CrossRefGoogle Scholar
  43. 43.
    D.H. Carter, M.A.M. Bourke, Neutron diffraction study of the deformation behavior of beryllium–aluminum composites. Acta Mater. 48(11), 2885 (2000)CrossRefGoogle Scholar
  44. 44.
    J.W. Arblaster, Thermodynamic properties of beryllium. J. Phase Equil. Diffus. 37(5), 581 (2016)CrossRefGoogle Scholar
  45. 45.
    J.L. Murray, D.J. Kahan, The Al–Be (Aluminum–Beryllium) system. J. Phase Equilib. 4(1), 50 (1983)Google Scholar

Copyright information

© American Foundry Society 2018

Authors and Affiliations

  1. 1.Institute of Materials ResearchChina Academy of Engineering PhysicsJiangyouChina

Personalised recommendations