Advertisement

Microsilica in Sodium Silicate Bonded Sands

  • L. Zaretskiy
Article
  • 17 Downloads

Abstract

This paper investigates the microsilica addition value in the improvement of the sand molds and cores properties made with sodium silicate binders. There are experiments confirming the importance of the better sand mixtures mobility in the strengthening of these molds and cores. The paper explains the difference between microsilica and nanosilica in their interaction with alkaline silicate solutions and shows how the products of this interaction affect the properties of the sand mixtures. The results presented in the paper show the role of microsilica in curing sodium silicate bonded sands and demonstrate more possibilities to spread its positive complex effect on the sand molds and cores cured chemically, without heat. Conducted experiments with these sands proved the benefits of applying microsilica as a sand additive for increasing density and strength of the molds and cores, for easing their shakeout by lowering silicate level in the binder system. It is shown that the microsilica presence in the powder component allows using a hydrous sodium silicate powder also as a part of this component to replace a liquid sodium silicate in the two-component silicate binder system as well as creating pourable dry mixtures of silica sand and all solid additives of the binder system.

Keywords

sodium silicate amorphous silica sand core properties 

Notes

Acknowledgements

Author is deeply grateful to his former company Borden Chemical, then HA International for giving him the great opportunity to use in America his many years of previous experience to propose, discover and realize some new opportunities for new silicate binder systems.

References

  1. 1.
    K. Major-Gabryś, Masy ze szkłem wodnym o zwiększonej wybijalności. Dissertation. (Akademia Górniczo-Hutnicza, Kraków 2006, in Polish)Google Scholar
  2. 2.
    F. Pezarski, E. Stoluchowska, I. Izdebska-Szandra, in Prace Institutu Odlewnictwa, XLVIII, Zeshyt 2, (2008, in Polish), pp. 19–34Google Scholar
  3. 3.
    D.V. Atterton, J. Stevenson, in AFS Transactions. 89, Paper 81-33 (1981), pp. 55–64Google Scholar
  4. 4.
    A.M. Lyass, Быстротвердеющие формовочные смеси (The fast cured mold sand mixtures) (Mashinostroenie, Moscow, 1965). (in Russian)Google Scholar
  5. 5.
    Y.A. Owusu, A.B. Draper, in AFS Transactions. 90, Paper 81-35 (1981), pp. 47–54Google Scholar
  6. 6.
    D. Trinowski, in AFS Sand Casting Conference. (Indianapolis, 16–18 October 2017)Google Scholar
  7. 7.
    Elkem Microsilica® for Superior Concrete. http://www.spec-kw.com/upload/MS_for_Superior_Concrete_694.pdf. Accessed 1 Aug 2018
  8. 8.
    D. King, in 37th Conference on Our World in Concrete & Structures.(Singapore, August 2012), pp. 113–134, http://cipremier.com. Accessed 1 Aug 2018
  9. 9.
    Свойства микрокремнезема (The properties of Microsilica), www.mikrosilika.com/d/54949/d/svoystva_mikrokremnezema.doc, (in Russian). Accessed 1 Aug 2018
  10. 10.
  11. 11.
    Silica Fume User’s Manual, www.silicafume.org/pdf/silicafume-users-manual.pdf. Accessed 1 Aug 2018
  12. 12.
    Пластифицированные Бетоны на Модифицированных Смешанных и Специальных Вяжущих. (Plasticized Concretes on Modified Mixed and Specialty Binders). http://agrotermal.ru, (in Russian). Accessed 1 Aug 2018
  13. 13.
    H. Bergna, U.S. Patent 4,316,744, 23 Feb 1982Google Scholar
  14. 14.
    L. Zaretskiy, Int. J. Metalcast. 10, 88–99 (2016)CrossRefGoogle Scholar
  15. 15.
    G. Weicker et al., U.S. Patent 7,770,629, 10 Aug 2010Google Scholar
  16. 16.
    C. Wallenhorst, German Patent DE 102012020511 A1, 24 Apr 2014Google Scholar
  17. 17.
    H. Deters et al., US Patent Application No. US 20160361756A1, 15 Dec 2016Google Scholar
  18. 18.
    H. Deters et al., US Patent Application No. US 20150174644, 25 June 2015Google Scholar
  19. 19.
    C. Wallenhorst, Giesserei-Rundschau, 57, Heft ¾ (2010), Seiten 50–52 (in German)Google Scholar
  20. 20.
    S. Zhukovskiy, F. Kvasha, Russ. Foundrym. 7, 41–44 (2012). (in Russian)Google Scholar
  21. 21.
    E. Weissenbek, T. Kautz, J. Brotzki, J. Müller, MTZ 72(06), 49–52 (2011)Google Scholar
  22. 22.
    L. Zaretskiy, Int. J. Metalcast. 12, 274–291 (2018)CrossRefGoogle Scholar
  23. 23.
    I. Gnüchtel et al., U.S. Patent 9,358,701, 7 June 2016Google Scholar
  24. 24.
    D. Bartels et al., U.S. Patent Application No. US 20150246387A1, 3 Sep 2015Google Scholar
  25. 25.
    H. Deters et al., US Patent Application No. US20160136724A1, 19 May 2016Google Scholar
  26. 26.
    S. Sasse, J. Knechten, J. Brotzki, C. Wallenhorst, A. Gerhards, S. Wojtas, Giesserei, 98, Heft 4, (2011), Seiten 36–40 (in German)Google Scholar
  27. 27.
    J. Müller, H. Deters, M. Oberleiter, H. Zupan, H. Lincke, R. Resch, J. Körschgen, A. Kasperowski, Cast. Plant Technol. 2, 16–22 (2015)Google Scholar
  28. 28.
    The new environment-friendly binder system SOLOSIL TX for core making for the mass production of complex cast components. http://www.foseco-at-gifa.com/fileadmin/GIFA2015/foundry_practice/FP263_binder_system_solosil_tx-e.pdf

Copyright information

© American Foundry Society 2018

Authors and Affiliations

  1. 1.HA International, RetiredOak ParkUSA

Personalised recommendations