International Journal of Metalcasting

, Volume 13, Issue 1, pp 158–165 | Cite as

Effect of Small Addition of Tin, Silicon and Iron on the Solute Atom Diffusion in the Al 3 wt% Cu 1 wt% Mg Alloy and Its Photoelectrochemical Protection

  • Z. Chaieb
  • O. Ould Mohamed
  • A. A. Raho
  • F. Saib
  • M. TrariEmail author


The formation of the Guinier–Preston–Bagaryatsky (GPB) zones in the alloy AlCuMg is controlled by the solute atoms diffusion. It occurs by nucleation, a growth phenomenon, described by the JMAK model. It is governed by the diffusion of solute atoms and coarsening process described by the LSW theory. The diffusion coefficient of the solute atoms is determined during the GPB zones coarsening in AlCuMg. Small addition of iron and silicon slows down the diffusion of the solute atoms in the alloy during the precipitation of GPB zones. On the other hand, the corrosion resistance of the alloy is considerably improved by photoelectrochemical process; the cathodic protection is achieved by short-circuiting the working electrode to n-CdS illuminated by visible light; the corrosion current decreases by 65% under visible light.


AlCuMg alloy coarsening diffusion hardening precipitation photoelectrochemical n-CdS 



The authors are grateful to Dr. S. Omeiri for his helpful discussion. The research was supported by the Faculty of Physic (USTHB, Algiers).

Supplementary material

40962_2018_244_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 12 kb)


  1. 1.
    C. Genevois, A. Deschamps, A. Denquin, B. Doisneau-cottignies, Quantitative investigation of precipitation and mechanical behaviour for AA2024 friction stir welds. Acta Mater. 53, 2447–2458 (2005). CrossRefGoogle Scholar
  2. 2.
    M.J. Jones, P. Heurtier, C. Desrayaud, F. Montheillet, D. Allehaux, J.H. Driver, Correlation between microstructure and microhardness in a friction stir welded 2024 aluminium alloy. Scr. Mater. 52, 693–697 (2005). CrossRefGoogle Scholar
  3. 3.
    S.C. Wang, M.J. Starink, N. Gao, Precipitation hardening in Al–Cu–Mg alloys revisited. Scr. Mater. 54, 287–291 (2006). CrossRefGoogle Scholar
  4. 4.
    A. Charai, T. Walther, C. Alfonso, A.-M. Zahra, C.Y. Zahra, Coexistence of clusters, GPB zones, S″-, S′- and S-phases in an Al-0.9% Cu-1.4% Mg alloy. Acta Mater. 48, 2751–2764 (2000). CrossRefGoogle Scholar
  5. 5.
    L. Berg, J. Gjønnes, V. Hansen, X. Li, M. Knutson-Wedel, G. Waterloo, D. Schryvers, L. Wallenberg, GP-zones in Al–Zn–Mg alloys and their role in artificial aging. Acta Mater. 49, 3443–3451 (2001). CrossRefGoogle Scholar
  6. 6.
    M. Murayama, K. Hono, Pre-precipitate clusters and precipitation processes in Al–Mg–Si alloys. Acta Mater. 47, 1537–1548 (1999). CrossRefGoogle Scholar
  7. 7.
    M.J. Starink*, N. Gao, L. Davin, J. Yan, A. Cerezo, Room temperature precipitation in quenched Al–Cu–Mg alloys: a model for the reaction kinetics and yield strength development. Philos. Mag. 85, 1395–1417 (2005). CrossRefGoogle Scholar
  8. 8.
    S. Özbilen, H.M. Flower, Zirconium-vacancy binding and its influence on S′-precipitation in an Al–Cu–Mg alloy. Acta Metall. 37, 2993–3000 (1989). CrossRefGoogle Scholar
  9. 9.
    A.K. Mukhopadhyay, G.J. Shiflet, E.A. Starke, Role of vacancies on the precipitation processes in Zr modified aluminum based alloys. Scr. Metall. Mater. 24, 307–312 (1990). CrossRefGoogle Scholar
  10. 10.
    G. Sigworth, F. DeHart, 03-135 recent developments in the high strength aluminum–copper casting alloy A206, Trans. FOUNDRYMENS Soc. 341–354 (2003)Google Scholar
  11. 11.
    G.A. Zaki, A.M. Samuel, H.W. Doty, F.H. Samuel, Effect of metallurgical parameters on the performance of Al-2%Cu-based alloys. Int. J. Met. 11, 581–597 (2017). Google Scholar
  12. 12.
    P. Ashtari, G. Birsan, A. Khalaf, S. Shankar, Controlled diffusion solidification of 2024, 6082 and 7075 Al alloys via tilt-pour casting process. Int. J. Met. 5, 43–64 (2011). Google Scholar
  13. 13.
    Z. Guo, W. Sha, Quantification of precipitate fraction in Al–Si–Cu alloys. Mater. Sci. Eng. A 392, 449–452 (2005). CrossRefGoogle Scholar
  14. 14.
    G. Waterloo, V. Hansen, J. Gjønnes, S.R. Skjervold, Effect of predeformation and preaging at room temperature in Al–Zn–Mg–(Cu, Zr) alloys. Mater. Sci. Eng. A 303, 226–233 (2001). CrossRefGoogle Scholar
  15. 15.
    G. Wang, Q. Sun, L. Feng, L. Hui, C. Jing, Influence of Cu content on ageing behavior of AlSiMgCu cast alloys. Mater. Des. 28, 1001–1005 (2007). CrossRefGoogle Scholar
  16. 16.
    G.K. Sigworth, T.A. Kuhn, Grain refinement of aluminum casting alloys. Int. J. Met. 1, 31–40 (2007). Google Scholar
  17. 17.
    E. Elgallad, F. Samuel, A. Samuel, H. Doty, Development of new Al–Cu based alloys aimed at improving the machinability of automotive castings. Int. J. Met. 3, 29–41 (2009). Google Scholar
  18. 18.
    O. Novelo-Peralta, G. González, G.A. Lara-Rodríguez, Characterization of precipitation in Al–Mg–Cu alloys by X-ray diffraction peak broadening analysis. Mater. Charact. 59, 773–780 (2008). CrossRefGoogle Scholar
  19. 19.
    S. Ahmadi, H. Arabi, S. Nouri, A. Shokuhfar, Mechanisms of precipitates formation in an Al–Cu–Li–Zr alloy using DSC technique and electrical resistance measurements. Iran. J. Mater. Sci. Eng. 6, 15–20 (2009)Google Scholar
  20. 20.
    N. Anjabin, A.K. Taheri, The effect of aging treatment on mechanical properties of AA6082 alloy: modeling experiment. Iran. J. Mater. Sci. Eng. 7, 14–21 (2010)Google Scholar
  21. 21.
    R.W. Cahn, P. Haasen, Physical Metallurgy, 4th edn. (North-Holland, Amsterdam, 1996)Google Scholar
  22. 22.
    S. Esmaeili, D.J. Lloyd, W.J. Poole, Modeling of precipitation hardening for the naturally aged Al–Mg–Si–Cu alloy AA6111. Acta Mater. 51, 3467–3481 (2003). CrossRefGoogle Scholar
  23. 23.
    A.I. Ibrahim, E.M. Elgallad, A.M. Samuel, H.W. Doty, F.H. Samuel, Effects of addition of transition metals on intermetallic precipitation in Al-2%Cu-1% Si-based alloys. Int. J. Met. (2017). Google Scholar
  24. 24.
    I.N. Khan, M.J. Starink, Microstructure and strength modelling of Al–Cu–Mg alloys during non-isothermal treatments: part 1—controlled heating and cooling. Mater. Sci. Technol. 24, 1403–1410 (2008). CrossRefGoogle Scholar
  25. 25.
    I.N. Khan, M.J. Starink, J.L. Yan, A model for precipitation kinetics and strengthening in Al–Cu–Mg alloys. Mater. Sci. Eng. A 472, 66–74 (2008). CrossRefGoogle Scholar
  26. 26.
    C.R. Hutchinson, S.P. Ringer, Precipitation processes in Al–Cu–Mg alloys microalloyed with Si. Metall. Mater. Trans. A 31, 2721–2733 (2000). CrossRefGoogle Scholar
  27. 27.
    A. Falahati, J. Wu, P. Lang, M.R. Ahmadi, E. Povoden-Karadeniz, E. Kozeschnik, Assessment of parameters for precipitation simulation of heat treatable aluminum alloys using differential scanning calorimetry. Trans. Nonferrous Met. Soc. China 24, 2157–2167 (2014). CrossRefGoogle Scholar
  28. 28.
    I.M. Lifshitz, V.V. Slyozov, The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19, 35–50 (1961). CrossRefGoogle Scholar

Copyright information

© American Foundry Society 2018

Authors and Affiliations

  • Z. Chaieb
    • 1
  • O. Ould Mohamed
    • 1
  • A. A. Raho
    • 1
  • F. Saib
    • 2
  • M. Trari
    • 2
    Email author
  1. 1.Laboratory of Solids Solutions, Faculty of PhysicsUSTHBEl-Alia, AlgiersAlgeria
  2. 2.Laboratory of Storage and Valorization of Renewable Energies, Faculty of ChemistryUSTHBAlgiersAlgeria

Personalised recommendations