International Journal of Metalcasting

, Volume 13, Issue 1, pp 121–129 | Cite as

Oxide Scale Behavior and Surface Protection of Al–Mg Alloys Containing a Trace of Ca

  • Seong-Ho HaEmail author
  • Young-Ok Yoon
  • Bong-Hwan Kim
  • Hyun-Kyu Lim
  • Taeg-Woo Lee
  • Sung-Hwan Lim
  • Shae K. Kim


In this study, the solid and liquid oxidation behaviors of Al–Mg alloys that had a trace of Ca were investigated. With increasing Ca content, the grains of α-Al dendrites in Al–7.5mass%Mg alloys were refined by the formation of two Ca-containing particles at grain boundaries. Using thermal gravimetric analysis result at 515 °C for 24 h under O2 atmosphere, Al–7.5mass%Mg alloy exhibited a parabolic behavior in its weight gain during oxidation. However, there was nearly no difference in the weight change during oxidation of the Al–7.5mass%Mg alloys that contained a trace of Ca. From the auger electron spectroscopy and transmission electron microscopy/energy-dispersive X-ray spectroscopy results for the oxidized surface, it is believed that the improvement in the oxidation resistance in Al–7.5mass%Mg alloys that contain Ca may be attributed to the formation of a mixed oxide layer that includes CaO, MgO, and Al2O3 on the surface. After a melt holding test for 3 h, there was no notable difference in Mg loss during oxidation between Al–7.5mass%Mg and Al–7.5mass%Mg–0.1mass%Ca alloys. However, for a melt oxidation time for 24 h, the Mg reduction of Al–7.5mass%Mg alloy reached approximately 15%, whereas in Ca added alloy, the reduction was controlled under 8%. The cross section of Al–10mass%Mg alloy that solidified after the melt holding test showed a significant contamination due to oxide inclusions. However, Ca added alloys had good internal soundness throughout all the conditions. It was confirmed that the protective layer formed by Ca-containing can suppress the formation of Mg-based oxide inclusions and result in an increase in the alloy internal soundness during the melting process.


Al–Mg alloy oxidation surface protection melt cleanliness 


  1. 1.
    L.F. Mondolfo, Aluminum Alloys: Structure and Properties (Butter-worth and Co., London, 1976)Google Scholar
  2. 2.
    G.E. Totten, D.S. MacKenzie, Handbook of Aluminum (MARCEL DEFFER, New York, 2003)CrossRefGoogle Scholar
  3. 3.
    J.R. Davis, Aluminum and Aluminum Alloys (ASM International, Materials Park, 1993)Google Scholar
  4. 4.
    M.-N. de Noirfontaine, G. Baldinozzi, M.-G. Barthés-Labrousse, J. Kusinski, G. Boëmare, M. Herinx, M. Feuerbacher, Oxid. Met. 73, 219 (2010)CrossRefGoogle Scholar
  5. 5.
    D.L. Belitskus, Oxid. Met. 3, 313 (1971)CrossRefGoogle Scholar
  6. 6.
    M. Okayasu, S. Takeuchi, Int. Metalcast. 12, 298 (2017)CrossRefGoogle Scholar
  7. 7.
    K. Prapasajchavet, Y. Harada, S. Kumai, Inter. Metalcast. 11, 123 (2017)CrossRefGoogle Scholar
  8. 8.
    D.J. Field, G.M. Scamans, E.P. Butler, Metall. Mater. Trans. A 18A, 463 (1987)CrossRefGoogle Scholar
  9. 9.
    I. Haginoya, T. Fukusako, T. Jpn, I. Met. 24, 613 (1983)Google Scholar
  10. 10.
    K.R. Ravi, R.M. Pillai, K.R. Amaranathan, B.C. Pai, M. Chakraborty, J. Alloys Comp. 456, 201 (2008)CrossRefGoogle Scholar
  11. 11.
    H. Sharifi, A.R. Khavandi, M. Divandari, M.I. Hasbullah, Int. J. Min. Met. Mater. 19, 77 (2012)CrossRefGoogle Scholar
  12. 12.
    C. Houska, Met. Mater. 4, 100 (1988)Google Scholar
  13. 13.
    C. Strupp, Ann. Occup. Hyg. 55, 43 (2011)Google Scholar
  14. 14.
    S.H. Ha, J.K. Lee, S.K. Kim, Mater. Trans. 49, 1081 (2008)CrossRefGoogle Scholar
  15. 15.
    B.S. You, W.W. Park, I.S. Chung, Scr. Mater. 42, 1089 (2000)CrossRefGoogle Scholar
  16. 16.
    J. Jeong, J. Im, K. Song, M. Kwon, S.K. Kim, Y.B. Kang, S.H. Oh, Acta Mater. 61, 3267 (2013)CrossRefGoogle Scholar
  17. 17.
    S.K. Kim, T.H. Nam, S.H. Kim, J.G. Kim, Mater. Corros. 63, 1 (2012)Google Scholar
  18. 18.
    S.K. Kim, J.K. Lee, Y.O. Yoon, H.H. Jo, J. Mater. Process. Technol. 187–188, 757 (2007)CrossRefGoogle Scholar
  19. 19.
    D.I. Jang, Y.O. Yoon, S.B. Jung, S.K. Kim, Mater. Trans. 49, 976 (2008)CrossRefGoogle Scholar
  20. 20.
    D.B. Lee, L.S. Hong, Y.J. Kim, Mater. Trans. 49, 1084 (2008)CrossRefGoogle Scholar
  21. 21.
    G.Y. Oh, Y.G. Jung, W.S. Yang, S.K. Kim, H.K. Lim, Y.J. Kim, Mater. Trans. 56, 1887 (2015)CrossRefGoogle Scholar
  22. 22.
    H. Okamoto, J. Phase Equilib. Diffus. 24, 91 (2003)CrossRefGoogle Scholar
  23. 23.
    C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R.B. Mahfoud, J. Melançon, A.D. Pelton, S. Petersen, Calphad 26, 189 (2002)CrossRefGoogle Scholar
  24. 24.
    G.K. Sigworth, T.A. Kuhn, Inter. Metalcast. 1, 31 (2007)CrossRefGoogle Scholar
  25. 25.
    K.C. Vlach, O. Salas, H. Ni, V. Jayaram, C.G. Levi, R. Mehrabian, J. Mater. Res. 6, 1982 (1991)CrossRefGoogle Scholar
  26. 26.
    P.C. Chen, T.S. Shih, C.Y. Wu, Mater. Trans. 50, 2366 (2009)CrossRefGoogle Scholar
  27. 27.
    A. Bahadur, Mater. Sci. 22, 1941 (1987)CrossRefGoogle Scholar
  28. 28.
    D.R. Gaskell, in Encyclopedia of Materials: Science and Technology, ed. by K.H. Buschow (Elsevier, New York, 2001), pp. 5481–5486CrossRefGoogle Scholar
  29. 29.
    M.H. Zayan, O.M. Jamjoom, N.A. Razik, Oxid. Met. 34, 323 (1990)CrossRefGoogle Scholar
  30. 30.
    N.B. Pilling, R.E. Bedworth, J. Inst. Metals 29, 529 (1923)Google Scholar
  31. 31.
    Y.M. Kim, C.D. Yim, H.S. Kim, B.S. You, Scr. Mater. 65, 958 (2011)CrossRefGoogle Scholar

Copyright information

© American Foundry Society 2018

Authors and Affiliations

  • Seong-Ho Ha
    • 1
    Email author
  • Young-Ok Yoon
    • 1
  • Bong-Hwan Kim
    • 1
  • Hyun-Kyu Lim
    • 1
  • Taeg-Woo Lee
    • 2
  • Sung-Hwan Lim
    • 2
  • Shae K. Kim
    • 1
  1. 1.Korea Institute of Industrial TechnologyIncheonKorea
  2. 2.Department of Advanced Materials Science and EngineeringKangwon National UniversityChuncheonKorea

Personalised recommendations