International Journal of Metalcasting

, Volume 12, Issue 4, pp 897–905 | Cite as

Microstructure and Mechanical Properties of AZ61 Magnesium Alloys with the Y and Ca Combined Addition

  • Chen JunEmail author
  • Zhang Qing
  • Li Quanan


In this paper, microstructure and mechanical properties of AZ61 magnesium alloys with the Y and Ca combined addition were investigated. The results exhibit that the addition of Y and Ca into AZ61 alloy leads to effective refinement of the microstructure and additional block-like Al2Y and long-rod Al2Ca phases found in AZ61–1.2Y alloy and AZ61–1.2Y–1.0Ca alloy, respectively. The tensile strength, elongation and creep properties of AZ61–Y–Ca alloy are significantly increased by the addition of Y and Ca. The tensile strength of AZ61–1.2Y–1.0Ca alloy at 20 and 175 °C is up to 225 and 175 MPa, and compared with AZ61 alloy, the strengths of the alloy are enhanced by 37 and 80%, respectively. AZ61–1.2Y–1.0Ca alloy achieves the lowest steady creep rate 2.5027 × 10−7 s−1 that is about 4 times lower than that of AZ61 alloy. The poor mechanical properties of AZ61 magnesium alloy is attributed to the softening of β-phase Mg17Al12, especially at elevated temperature. The tensile strength and creep resistance of AZ61–1.2Y–1.0Ca alloy are effectively improved by the Al2Ca and Al2Y phases.


AZ61 alloy mechanical properties Ca microstructure 



This research was financially supported by the funding of the National Natural Science Foundation of China (NSFC-Henan Joint Fund of Personnel Training, U1404501), National Natural Science Foundation of China (51571084) and Natural science research project of Henan Provincial Department of Education (16A430036).


  1. 1.
    S.M. Zhu, M.A. Easton, M.A. Gibson, M.S. Dargusch, J.F. Nie, Mater. Sci. Eng. A 578, 377–382 (2013)CrossRefGoogle Scholar
  2. 2.
    S.M. Zhu, M.A. Gibson, J.F. Nie, M.A. Easton, T.B. Abbott, Scripta Mater. 58, 477–480 (2008)CrossRefGoogle Scholar
  3. 3.
    J. Wang, J. Fu, X. Dong, Y. Yang, Mater. Des. 36, 432–437 (2012)CrossRefGoogle Scholar
  4. 4.
    R. Mahmudi, F. Kabirian, Z. Nematollahi, Mater. Des. 32, 2583–2589 (2011)CrossRefGoogle Scholar
  5. 5.
    S. Spigarelli, M. Cabibbo, E. Evangelista, M. Talianker, V. Ezersky, Mater. Sci. Eng. A 289, 172–181 (2000)CrossRefGoogle Scholar
  6. 6.
    S.-L. Cheng, G.-C. Yang, J.-F. Fan, Y.-J. Li, Y.-H. Zhou, Trans. Nonferrous Met. Soc. China 19, 299–304 (2009)CrossRefGoogle Scholar
  7. 7.
    Y. Zhang, L. Yang, J. Dai, J. Ge, G. Guo, Z. Liu, Mater. Des. 63, 439–445 (2014)CrossRefGoogle Scholar
  8. 8.
    Y. Wu, W. Du, Z. Yan, Z. Wang, T. Zuo, Rare Met. 29, 55–61 (2010)CrossRefGoogle Scholar
  9. 9.
    F. Wang, Y. Wang, P.L. Mao, B.Y. Yu, Q.Y. Guo, Trans. Nonferrous Met. Soc. China 20, S311–S317 (2010)CrossRefGoogle Scholar
  10. 10.
    Y. Terada, Y. Murata, T. Sato, Mater. Sci. Eng. A 613, 136–140 (2014)CrossRefGoogle Scholar
  11. 11.
    J. Liu, W. Wang, S. Zhang, D. Zhang, H. Zhang, J. Alloys Compd. 620, 74–79 (2015)CrossRefGoogle Scholar
  12. 12.
    B. Jing, S. Yangshan, X. Feng, X. Shan, Q. Jing, T. Weijian, Scripta Mater. 55, 1163–1166 (2006)CrossRefGoogle Scholar
  13. 13.
    D. Amberger, P. Eisenlohr, M. Göken, Mater. Sci. Eng. A 510–511, 398–402 (2009)CrossRefGoogle Scholar
  14. 14.
    F. Naghdi, R. Mahmudi, Mater. Sci. Eng. A 616, 161–170 (2014)CrossRefGoogle Scholar
  15. 15.
    F. Naghdi, R. Mahmudi, Mater. Sci. Eng. A 610, 315–325 (2014)CrossRefGoogle Scholar
  16. 16.
    M.J. Nayyeri, Y. Ganjkhanlou, A. Kolahi, A.M. Jamili, Trans. Indian Inst. Met. 67, 469–475 (2014)CrossRefGoogle Scholar
  17. 17.
    W.L. Xiao, S.S. Jia, J. Wang, Y.M. Wu, L.M. Wang, Mater. Sci. Eng. Struct. Mater. Prop. Microstruc. Process. 474, 317–322 (2008)CrossRefGoogle Scholar
  18. 18.
    M. Yang, H. Li, C. Duan, J. Zhang, J. Alloys Compd. 579, 92–99 (2013)CrossRefGoogle Scholar
  19. 19.
    B. Nami, H. Razavi, S. Mirdamadi, S.G. Shabestari, S.M. Miresmaeili, Metall. Mater. Trans. A 41, 1973–1982 (2010)CrossRefGoogle Scholar
  20. 20.
    W. Ding, T. Xia, W. Zhao, Materials 7, 3663 (2014)CrossRefGoogle Scholar
  21. 21.
    B.L. Bramfitt, Metall. Trans. 1, 2958 (1970)CrossRefGoogle Scholar
  22. 22.
    M.B. Yang, C.Y. Duan, H.L. Li, T.Z. Guo, J. Zhang, J. Alloys Compd. 574, 165–173 (2013)CrossRefGoogle Scholar
  23. 23.
    S.M. Zhu, B.L. Mordike, J.F. Nie, Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process. 483–84, 583–586 (2008)CrossRefGoogle Scholar
  24. 24.
    Y. Zhang, L. Yang, J. Dai, G. Guo, Z. Liu, Mater. Sci. Eng. A 610, 309–314 (2014)CrossRefGoogle Scholar
  25. 25.
    N. Balasubramani, U.T.S. Pillai, B.C. Pai, J. Alloys Compd. 457, 118–123 (2008)CrossRefGoogle Scholar
  26. 26.
    I.P. Moreno, T.K. Nandy, J.W. Jones, J.E. Allison, T.M. Pollock, Scripta Mater. 48, 1029–1034 (2003)CrossRefGoogle Scholar
  27. 27.
    V. Angelini, L. Ceschini, A. Morri, Int. J. Metalcast. 11, 382–395 (2017)CrossRefGoogle Scholar
  28. 28.
    A. Elsayed, E. Vandersluis, S.L. Sin, C. Ravindran, Int. J. Metalcast. 11, 749–765 (2017)CrossRefGoogle Scholar
  29. 29.
    M.J. Shen, F.Y. Chen, J.M. Hou, Int. J. Metalcast. 11, 287–293 (2017)CrossRefGoogle Scholar

Copyright information

© American Foundry Society 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringHenan University of Science and TechnologyLuoyangPeople’s Republic of China
  2. 2.Collaborative Innovation Center of Nonferrous MetalsLuoyangPeople’s Republic of China

Personalised recommendations