International Journal of Metalcasting

, Volume 12, Issue 4, pp 712–721 | Cite as

Effect of Alloying Elements on Growth Behavior of Intermetallic Compounds at the Cold-Sprayed Coating/Steel Interface During Immersion in Aluminum Melt

  • K. Bobzin
  • M. Öte
  • S. Wiesner
  • L. GerdtEmail author
  • A. Bührig-Polaczek
  • J. Brachmann


The formation of the intermetallic compounds at the interface between cold-sprayed coatings and steel as well as interaction between coatings and aluminum melt was investigated. Coatings of AA7075 (AlZn5.5MgCu) and AA4145 (AlSi10Cu4) were deposited on the sheets of the deep drawing steel DC04. The coated samples were then immersed in the aluminum melt AlSi9Mn at the temperature of T = 610 °C for different durations in the range 30 s < t < 10 min. The reaction layer growth was examined metallographically and by means of scanning electron microscope with energy-dispersive spectroscopy. Furthermore, the intermetallic phases were identified by X-ray diffraction analysis and characterized by microhardness measurements. For both coatings, β-AlFeSi phases were shown to be the major constituent in the reaction zone. The growth kinetics of the intermetallic phases appeared to be similar for AA4145 and AA7075 coatings, while their morphology was completely different.


high-pressure die casting coating cold gas spraying immersion tests reaction layer growth 



This research is supported by the German Research Foundation (DFG) under Contract No. BO 1979/39-1. Special thanks are addressed to our project partners from the institute of metal forming (IBF) from RWTH Aachen University.


  1. 1.
    S. Nisslé, S. Dassler, U. Noster, A. Mundl, Verbundguss, Neue Auslegungsmöglichkeiten für Gussteile durch Funktionsintegration oder lokale Verstärkung. Tagungsband der 5. Ranshofener Leichtmetalltage (LKR-Verlag, Ranshofen, 2008), pp. 35–44Google Scholar
  2. 2.
    A. Fent, Magnesium-Aluminium-Verbundkurbelgehäuse-Einsatz von Neutronen in der Bauteilentwicklung. Garching (2006)Google Scholar
  3. 3.
    C. Oberschelp, Hybride Leichtbaustrukturen für den Karosseriebau - gusswerkstofforientierte Anwendungsuntersuchungen für das Druckgießen. Diss., Gießerei-Inst. der RWTH, Aachen (2012)Google Scholar
  4. 4.
    Variostruct: multi-material-components.
  5. 5.
    K. Bouché, F. Barbier, A. Coulet, Intermetallic compound layer growth between solid iron and molten aluminium. Mater. Sci. Eng. A 249(1-2), 167–175 (1998)CrossRefGoogle Scholar
  6. 6.
    W.-J. Cheng, C.-J. Wang, EBSD study of crystallographic identification of Fe–Al–Si intermetallic phases in Al–Si coating on Cr–Mo steel. Appl. Surf. Sci. 257(10), 4637–4642 (2011)CrossRefGoogle Scholar
  7. 7.
    W. Fragner, B. Zberg, R. Sonnleitner, P.J. Uggowitzer, J.F. Löffler, Interface reactions of Al and binary Al-alloys on mild steel substrates in controlled atmosphere. MSF 519–521, 1157–1162 (2006)CrossRefGoogle Scholar
  8. 8.
    Y. Tanaka, M. Kajihara, Morphology of compounds formed by isothermal reactive diffusion between solid Fe and liquid Al. Mater. Trans. 50(9), 2212–2220 (2009)CrossRefGoogle Scholar
  9. 9.
    K.A. Nazari, S.G. Shabestari, Effect of micro alloying elements on the interfacial reactions between molten aluminum alloy and tool steel. J. Alloy. Compd. 478(1-2), 523–530 (2009)CrossRefGoogle Scholar
  10. 10.
    W. Fragner, K. Papis, J. Wosik, P.J. Uggowitzer, Herausforderungen und Lösungsmöglichkeiten bei der Herstellung von Verbundgussteilen. Vortragstext, 5. Ranshofener Leichtmetalltage 2008, LKR-Verlag, herausgegeben von U. Noster, F. Riemelmoser u. P. J. Uggowitzer, Ranshofen (2008), pp. 75–85Google Scholar
  11. 11.
    B. Lao, Druckgegossene Metallhybridstrukturen für den Leichtbau-Prozess, Werkstoffe und Gefüge der Metallhybriden. Diss., Gießerei-Inst. der RWTH, Aachen (2013)Google Scholar
  12. 12.
    S. Kobayashi, T. Yakou, Control of intermetallic compound layers at interface between steel and aluminum by diffusion-treatment. Mater. Sci. Eng. A 338(1-2), 44–53 (2002)CrossRefGoogle Scholar
  13. 13.
    V. Zolotorevski, N.A. Belov, M.V. Glazoff, Casting aluminum alloys (Elsevier, Oxford, 2007)Google Scholar
  14. 14.
    V.I. Dybkov, Interaction of 18Cr-10Ni stainless steel with liquid aluminium. J. Mater. Sci. 25(8), 3615–3633 (1990)CrossRefGoogle Scholar
  15. 15.
    H. Springer, A. Kostka, J.F. dos Santos, D. Raabe, Influence of intermetallic phases and Kirkendall-porosity on the mechanical properties of joints between steel and aluminium alloys. Mater. Sci. Eng. A 528(13-14), 4630–4642 (2011)CrossRefGoogle Scholar
  16. 16.
    H. Springer, A. Kostka, E.J. Payton, D. Raabe, A. Kaysser-Pyzalla, G. Eggeler, On the formation and growth of intermetallic phases during interdiffusion between low-carbon steel and aluminum alloys. Acta Mater. 59(4), 1586–1600 (2011)CrossRefGoogle Scholar
  17. 17.
    B. Lemmens, H. Springer, I. de Graeve, J. de Strycker, D. Raabe, K. Verbeken, Effect of silicon on the microstructure and growth kinetics of intermetallic phases formed during hot-dip aluminizing of ferritic steel. Surf. Coat. Technol. 319, 104–109 (2017)CrossRefGoogle Scholar
  18. 18.
    W.-J. Cheng, C.-J. Wang, Effect of silicon on the formation of intermetallic phases in aluminide coating on mild steel. Intermetallics 19(10), 1455–1460 (2011)CrossRefGoogle Scholar
  19. 19.
    N. Takata, M. Nishimoto, S. Kobayashi, M. Takeyama, Morphology and formation of Fe–Al intermetallic layers on iron hot-dipped in Al–Mg–Si alloy melt. Intermetallics 54, 136–142 (2014)CrossRefGoogle Scholar
  20. 20.
    N.A. Ei-Mahallawy, M.A. Taha, M.A. Shady, A.R. Ei-Sissi, A.N. Attia, W. Reif, Analysis of coating layer formed on steel strips during aluminising by hot dipping in Al-Si baths. Mater. Sci. Technol. 13(10), 832–840 (2013)CrossRefGoogle Scholar

Copyright information

© American Foundry Society 2018

Authors and Affiliations

  1. 1.Surface Engineering InstituteRWTH Aachen UniversityAachenGermany
  2. 2.Foundry InstituteRWTH Aachen UniversityAachenGermany

Personalised recommendations