Advertisement

Sustainable Water Resources Management

, Volume 5, Issue 4, pp 1791–1801 | Cite as

Groundwater and surface water interactions in flat lands: the importance of ecological and flow regulation perspectives

  • Marcelo Varni
  • Rosario Soledad BarranqueroEmail author
  • Sofía Zeme
Original Article

Abstract

Recharge in arid zones has been studied thoroughly due to the scarcity of groundwater that is available for extraction. However, the issue of depressed groundwater levels in sub-humid areas is mainly reflected by the contribution of the base flow to a watercourse; this contribution constitutes a very important alteration of the ecological conditions of a watercourse, including its substrate and surroundings. Continuous groundwater records from 2007 to 2014 for six wells located within the Del Azul Creek basin were analyzed. The recharge was calculated using the water table fluctuation method. The relationship between the groundwater level in each well and the base flow through a section of the creek was analyzed on a monthly basis to obtain a quadratic equation. The ecological flow of the stream was also determined, using the 7-day minimum flow method. Due that the base flow variations can strongly affect the ecological quality of this type of basin, with vertical flows more important than horizontal flows, the results are a contribution for water resource management practices in the areas of influence of surface water bodies. Groundwater mean monthly levels in wells located in the lower area of the basin, showed high adjustment coefficients for the quadratic equations that relate these levels to the base flow. These equations are good tools for decision makers regarding land use planning. Because our interest is low-flows, an equation that relates mean monthly base flow versus groundwater levels during the summer months are adjusted.

Keywords

Large flat lands Water table fluctuation method Base flow Critical groundwater levels 

Notes

Acknowledgments

Rosario Soledad Barranquero and Sofía Zeme participated in this project thanks to the support of fellowships from CONICET and the CIC, respectively.

References

  1. Barmuta LA, Watson A, Clarke A, Clapcott JE (2009) The importance of headwater streams. Waterlines report, National Water Commission, Canberra. http://content.webarchive.nla.gov.au/gov/wayback/20150406143525/http://archive.nwc.gov.au/__data/assets/pdf_file/0018/10980/Waterlines25_Headwaters.pdf
  2. Biggs J, von Fumetti S, Kelly-Quinn M (2017) The importance of small waterbodies for biodiversity and ecosystem services: implications for policy makers. Hydrobiologia 793(1):3–39CrossRefGoogle Scholar
  3. Bocanegra E (1979) Estudio hidrogeológico del acuífero en explotación en la ciudad de Azul. Informe Interno OSN, Gerencia Regional Pampeana, Buenos AiresGoogle Scholar
  4. Boulton AJ (2003) Parallels and contrasts in the effects of drought on stream macroinvertebrate assemblages. Freshw Biol 48(7):1173–1185CrossRefGoogle Scholar
  5. Clarke A, MacNally R, Bond N, Lake PS (2008) Macroinvertebrate diversity in headwater streams: a review. Freshw Biol 53:1707–1721CrossRefGoogle Scholar
  6. Cortelezzi A, Sierra MV, Gómez N, Marinelli C, Capítulo AR (2013) Macrophytes, epipelic biofilm, and invertebrates as biotic indicators of physical habitat degradation of lowland streams (Argentina). Environ Monit Assess 185(7):5801–5815CrossRefGoogle Scholar
  7. Crosbie RS, Binning P, Kalma JD (2005) A time series approach to inferring groundwater recharge using the water table fluctuation method. Water Resour Res 41:W01008.  https://doi.org/10.1029/2004wr003077 CrossRefGoogle Scholar
  8. Damiano F, Fernández N, Parodi G, Rébori G (1989) Manejo del agua pluvial en la zona Deprimida del Salado. Manejo del Suelo y Aguas en las Llanuras Argentinas, INTA-CONAPHI, pp 133–166Google Scholar
  9. Datry T, Larned ST, Tockner K (2014) Intermittent rivers: a challenge for freshwater ecology. BioScience 64(3):229–235CrossRefGoogle Scholar
  10. Đukić V, Mihailović V (2012) Analysis of groundwater regime on the basis of stream flow hydrograph. Arch Civ Eng 10(3):301–314.  https://doi.org/10.2298/FUACE1203301D CrossRefGoogle Scholar
  11. Eckhardt K (2005) How to construct recursive digital filters for base flow separation. Hydrol Process 19(2):507–515.  https://doi.org/10.1002/hyp.5675 CrossRefGoogle Scholar
  12. Fidalgo F, De Francesco F, Pascual R (1975) Geología superficial de la Llanura Bonaerense [Surface geology of the Buenos Aires Plain]. In: Relatorio Geología Provincia de Buenos Aires. VI Congreso Geológico Argentino, September 21–27, 1975, Bahía Blanca, Argentina. Buenos Aires: imp. CONI S.A.C.I.F.I., pp 104–106Google Scholar
  13. González Bonorino F, Zardini R, Figueroa M, Limousin T (1956) Estudio geológico de las Sierras de Olavarría y Azul (Provincia de Buenos Aires). LEMIT Ser 2(63):5–23Google Scholar
  14. Hancock PJ, Boulton AJ, Humphreys WF (2005) Aquifers and hyporheic zones: towards an ecological understanding of groundwater. Hydrogeol J 13:98.  https://doi.org/10.1007/s10040-004-0421-6 CrossRefGoogle Scholar
  15. Hashashi M, Rosenberry D (2002) Effects on groundwater exchange on the hydrology and ecology of the subsurface water. Ground Water 40(3):309–316CrossRefGoogle Scholar
  16. Healy RW (2010) Estimating groundwater recharge. Cambridge University Press, Cambridge.  https://doi.org/10.1017/CBO9780511780745 CrossRefGoogle Scholar
  17. Healy RW, Cook PG (2002) Using groundwater levels to estimate recharge. Hydrogeol J 10:91–109.  https://doi.org/10.1007/s10040-001-0178-0 CrossRefGoogle Scholar
  18. Iriondo M (2004) Large wetlands of South America: a model for quaternary humid environments. Quatern Int 114:3–9CrossRefGoogle Scholar
  19. Iriondo M, Kröhling D (2007) Cuenca superior del río Salado (Sur de Santa Fe y Noroeste de Buenos Aires, Argentina). J Sedim Basin Anal 14(1):1–23Google Scholar
  20. Konrad CP, Booth DB (2005) Hydrologic changes in urban streams and their ecological significance. Am Fish Soc Symp 47:57–177Google Scholar
  21. Kòvacs G (1983) General principles of flat land hydrology. In: Fuschini Mejia M (ed) International talk about hydrology of large flatlands 1. UNESCO, Buenos Aires, pp 299–335Google Scholar
  22. Kruse E (1992) Estimación de escurrimientos subterráneos en la cuenca del arroyo Azul (Buenos Aires) [Groundwater fluxes estimation in the Basin of the Azul stream (Buenos Aires)]. Comisión de Investigaciones Científicas de la Provincia de Buenos Aires Year II 15:3–12Google Scholar
  23. Kruse E, Zimmermann E (2002) Hidrogeología de Grandes Llanuras. Particularidades en la Llanura Pampeana (Argentina). Groundwater and Human Development. Mar del Plata (Argentina). XXXII IAH Congress, pp 2025-2038Google Scholar
  24. Kruse E, Forte Lay JA, Aiello JL, Basualdo A, Heinzenknecht G (2001) Hydrological processes on large flatlands. Case study: Northwest region of Buenos Aires Province (Argentina), 267. IAHS Publication, Wallingford, pp 531–536Google Scholar
  25. Lake PS (2003) Ecological effects of perturbation by drought in flowing waters. Freshw Biol 48:1161–1172CrossRefGoogle Scholar
  26. Manglik A, Rai SN (2000) Modeling of water table fluctuations in response to time-varying recharge and withdrawal. Water Resour Manag 14:339–347.  https://doi.org/10.1023/A:1011154903100 CrossRefGoogle Scholar
  27. Méndez Escobar R, Usunoff E, Weinzettel PA (1995). Aportes al conocimiento del subsuelo de la cuenca del arroyo Azul (provincia de Buenos Aires). V Jornadas Pampeanas de Ciencias Naturales (La Pampa)Google Scholar
  28. Meyer JL, Strayer DL, Wallace JB, Eggert SL, Helfman GS, Leonard NE (2007) The contribution of headwater streams to biodiversity in river networks. J Am Water Resour Assoc 43:86–103CrossRefGoogle Scholar
  29. Moon S-K, Wooa NC, Lee KS (2004) Statistical analysis of hydrographs and water-table fluctuation to estimate groundwater recharge. J Hydrol 292:198–209.  https://doi.org/10.1016/j.jhydrol.2003.12.030 CrossRefGoogle Scholar
  30. Nagy MI, Auge MP (1992). Relación entre el flujo vertical y lateral del agua subterránea. Cuenca del Arroyo Del Azul, Provincia de Buenos Aires [Relationship between the vertical and lateral flow of groundwater, Azul River watershed, Buenos Aires Province]. In: Proceedings III Buenos Aires Province geological conference, pp 165–170Google Scholar
  31. Nathan RJ, McMahon TA (1990) Evaluation of automated techniques for baseflow and recession analysis. Water Resour Res 26(7):1465–1473CrossRefGoogle Scholar
  32. Park E, Parker JC (2008) A simple model for water table fluctuations in response to precipitation. J Hydrol 356:344–349.  https://doi.org/10.1016/j.jhydrol.2008.04.022 CrossRefGoogle Scholar
  33. Price K (2011) Effects of watershed topography, soils, land use, and climate on baseflow hydrology in humid regions: a review. Progress Phys Geog 35(4):465–492.  https://doi.org/10.1177/0309133311402714 CrossRefGoogle Scholar
  34. Quirós R, Rennella AM, Boveri MB, Rosso JJ, Sosnovsky A (2002) Factores que afectan la estructura y el funcionamiento de las lagunas pampeanas. Ecol Austr l12:175–185Google Scholar
  35. Quiroz-Londoño OM, Martínez D, Massone H (2012) Estimación de recarga de acuíferos en ambientes de llanura con base en variaciones de nivel freático. Tecnol Cienc Agua III 2:123–130Google Scholar
  36. Risser DW, Gburek WJ, Folmar GJ (2005) Comparison of methods for estimating ground-water recharge and base flow at a small watershed underlain by fractured bedrock in the Eastern United States. US Geological Survey Scientific Investigation Report 2005-5038Google Scholar
  37. Sala JM, Kruse E, Aguglino R (1987) Investigación hidrológica de la Cuenca del Arroyo Azul, Provincia de Buenos Aires. CIC, Informe 37, p 235Google Scholar
  38. Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10:18–39.  https://doi.org/10.1007/s10040-0010176-2 CrossRefGoogle Scholar
  39. Soil Survey Staff (1999) Soil Taxonomy. NRCS-USDA, Agriculture Handbook 436, 2nd edn. Government Printing Office, Washington DC, USAGoogle Scholar
  40. Sophocleous MA (1991) Combining the soil water balance and water-level fluctuation methods to estimate natural groundwater recharge; practical aspects. J Hydrol 124:229–241.  https://doi.org/10.1016/0022-1694(91)90016-B CrossRefGoogle Scholar
  41. Storey RG, Howard KWF, Williams DD (2003) Factors controlling riffle-scale hyporheic exchange flows and their seasonal changes in a gaining stream: a three-dimensional groundwater flow model. Water Resour Res 39(2):1034.  https://doi.org/10.1029/2002WR001367 CrossRefGoogle Scholar
  42. Todd DK (1980) Groundwater hydrology. Wiley, New YorkGoogle Scholar
  43. US EPA (2015) Connectivity of streams and wetlands to downstream waters: a review and synthesis of the scientific evidence. Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-14/475FGoogle Scholar
  44. Usunoff E, Varni M, Rivas R, Weinzettel P (2000) Aspectos hidrogeológicos de relevancia de la llanura pampeana en el centro de la provincia de Buenos Aires, Argentina [Relevant hydrogeological aspects of the pampean plain in the central Buenos Aires province, Argentina]. In: Proceedings 1st join world congress on groundwater (IAH-IAHS), Fortaleza, Brazil, paper 216, p 18Google Scholar
  45. Varni M (2005) Evaluación de la recarga al acuífero del Azul: valores medios y variaciones temporal y espacial [Evaluation of the Azul aquifer recharge: mean values and temporal and spatial variations]. Doctoral Thesis, Faculty of Sciences, Engineering and Surveying, National University of Rosario, Rosario, ArgentinaGoogle Scholar
  46. Varni M, Comas R, Weinzettel P, Dietrich S (2013a) Application of the water table fluctuation method to characterize groundwater recharge in the Pampa plain, Argentina. Hydrol Sci J 58(7):1445–1455.  https://doi.org/10.1080/02626667.2013.833663 CrossRefGoogle Scholar
  47. Varni M, Entraigas I, Migueltorena V, Comas R (2013b) Evaluation of flooded areas with satellite imagery using an objective hydrologic criterion. Water Environ J 27:396–401Google Scholar
  48. Varni M, Zeme S, Weinzettel P, Dietrich S (2014) Relación entre recarga al acuífero freático y otros términos del balance hídrico en Azul, Centro de la Provincia de Buenos Aires [Relationship between recharge to the water table and other terms of the water balance in Azul, Center of the Buenos Aires Province]. In: Memorias del II Congreso Internacional de Hidrología de Llanuras. Universidad Nacional del Litoral, Santa FeGoogle Scholar
  49. Weinzettel P, Usunoff E (2005) Estimación de la recarga en un área de llanura mediante el muestreo del ion cloruro con cápsulas de succión [Recharge estimation in a plain area by the chloride ion sampling with suction cups]. In: Calvete S, González P (eds) Estudios de la zona no saturada del suelo [Studies conducted in the unsaturated zone of the soil], vol VIII. Cordoba University, Spain, pp 63–68Google Scholar
  50. Weinzettel P, Usunoff E, Vives L (2005) Groundwater recharge estimations from studies of the unsaturated zone. In: Bocanegra E, Hernandez M, Usunoff E (eds) Groundwater and human development. Balkema, LeidenGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marcelo Varni
    • 1
  • Rosario Soledad Barranquero
    • 2
    Email author
  • Sofía Zeme
    • 3
  1. 1.Instituto de Hidrología de Llanuras “Eduardo Jorge Usunoff”AzulArgentina
  2. 2.CONICET-CIC-CINEA, Centro de Investigaciones y Estudios Ambientales (CINEA)TandilArgentina
  3. 3.CIC-IHLLA, Instituto de Hidrología de Llanuras “Eduardo Jorge Usunoff” (IHLLA)AzulArgentina

Personalised recommendations