Advertisement

Application of nitrogen and boron isotopes for tracing sources of anthropogenic contamination in Monforte-Alter do Chão aquifer system, Portugal

  • P. Fernandes
  • M. R. Carvalho
  • M. C. Silva
  • A. Rebelo
  • J. Zeferino
Original Article
  • 1 Downloads

Abstract

The Monforte-Alter do Chão aquifer system represents one of the main water resources in Alentejo region (SW Portugal), and is located in an area of intensive agriculture and cattle breeding. The groundwater shows varied chemical composition, reflecting fast chemical changes associated with the water–rock interaction, with waters of Ca–HCO3, Na/Ca–HCO3, and Na–HCO3 facies. Some of the waters have strong evidence of nitrogen contamination with nitrate concentrations above 50 mg/l. The implementation of the European Nitrates Directive and the Water Framework Directive has led to the designation of large areas as Nitrate Vulnerable Zones, for being at risk from agricultural nitrate pollution: groundwater containing or that could contain more than 50 mg/l of nitrates. Corrective measures taken to reverse the trend can only be established when the contaminant source is known. In this study, the isotopic compositions of NO315N and δ18O) and B (δ11B) were used to identify the sources of the nitrogen contamination. Despite the occurrence of some evaporation processes, the δ15N and δ18O isotopes allowed to distinguish two groups of waters with different sources of nitrates, fertilizers, and soils or manure and domestic effluents. The analysis of the NO3 source based on δ11B isotope ratio pointed out contamination by pig farms effluents. However, considering the land occupation and the strong livestock activities in the area, it is possible that the adsorption of 11B isotopes onto clays or the high pH of the groundwater could explain the high δ11B values.

Keywords

Nitrate source N, O, and B isotopes Monforte-Alter do Chão aquifer system 

Notes

Acknowledgements

The authors are grateful for the financial support of the national agency for environmental protection—Agência Portuguesa do Ambiente—APA, I.P., and Fundação Ciência e Tecnologia—FCT project reference UID/GEO/50019/2013—Instituto Dom Luiz. Authors acknowledge the fruitful revision and contribution of the two anonymous reviewers.

References

  1. Almeida C, Mendonça JL, Jesus MR, Gomes AJ (2000) Sistemas Aquíferos de Portugal Continental, Relatório. INAG, Instituto da Água, LisboaGoogle Scholar
  2. Araújo A (1995) Estrutura de uma geotransversal entre Brinches e Mourão (Zona de Ossa-Morena): implicações na evolução geodinâmica da margem sudoeste do Terreno Autóctone Ibérico.Tese de Doutoramento, Dep. Geociências da Univ. de ÉvoraGoogle Scholar
  3. Aravena R, Evans ML, Cherry JA (1993) Stable isotopes of oxygen and nitrogen in source identification of nitrate from septic systems. Ground Water 31:180–186CrossRefGoogle Scholar
  4. Aravena R, Mayer B, Aelion CM (2010) Isotopes and processes in the nitrogen and sulfur cycles. In: Höhener P, Hunkeler D, Aravena R (Eds.) Environmental isotopes in biodegradation and bioremediation. CRC Press, Boca Raton, pp 203–246Google Scholar
  5. Baily A, Rock L, Watson CJ, Fenton O (2011) Spatial and temporal variations in groundwater nitrate at an intensive dairy farm in south-east Ireland: insights from stable isotope data. Agric Ecosys Environ 144:308–318CrossRefGoogle Scholar
  6. Basset RL, Buszka PM, Davidson GR, Chong-Diaz D (1995) Identification of groundwater solute sources using boron isotopic composition. Environ Sci Technol 29:2915–2922CrossRefGoogle Scholar
  7. Bassett RL (1990) A critical evaluation of the available measurements for the stable isotopes of boron. Appl Geochem 5:541–554CrossRefGoogle Scholar
  8. Bohlke JK (2002) Groundwater recharge and agricultural contamination. Hydrogeol J 10:153–179CrossRefGoogle Scholar
  9. Bottcher J, Strebel O, Voerkelius S, Schmidt HL (1990) Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer. J Hydrol 114:413–424CrossRefGoogle Scholar
  10. Carvalho MR, Fernandes P, Silva C (2011) Directiva Nitratos—Determinação da origem do nitrato no sistema aquífero de Monforte-Alter do Chão utilizando técnicas isotópicas. Anexo. INAG e FFCUL, LisboaGoogle Scholar
  11. Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publishers, Boca RatonGoogle Scholar
  12. Costa A (1995) Avaliação de Recursos Hídricos Subterrâneos na Herdade de Torre de Palma. Relatório Interno, IGM, LisboaGoogle Scholar
  13. Costa IR, Barriga F, Mata J, Munhá JM (1993) Rodingitization and serpentinization processes in Alter do Chão Massif (NE Alentejo). In: Noronha F, Marques M, Nogueira P (eds) Actas da IX Semana de Geoquímica. Universidade do Porto. Faculdade de Ciências. Museu e Laboratório Mineralógico e Geológico, Porto, pp 27–31Google Scholar
  14. Craig H (1961) Standard for reporting concentrations of deuterium and oxygen-18 in natural water. Science 133:1833–1834CrossRefGoogle Scholar
  15. Craig H, Gordon LI, Horibe Y (1963) Isotopic exchange effects in the evaporation of water. J Geophys Res 68:5079–5087CrossRefGoogle Scholar
  16. Curt MD, Aguado P, Sánchez G, Bigeriego M, Fernández J (2004) Nitrogen isotope ratios of synthetic and organic sources of nitrate water contamination in Spain. Water Air Soil Pollut 151:135–142CrossRefGoogle Scholar
  17. Delgado JFN (1904) Faune cambrienne du Haut-Alemtejo (Portugal) Comunicações da Comissão do Serviço. Geológico de Portugal 5:307–374Google Scholar
  18. Eisenhut S, Heumann KG, Vengosh A (1996) Determination of boron isotopic variations in aquatic systemswith negative thermal ionizationmass spectrometry as a tracer for anthropogenic influences. Fresenius J Anal Chem 354:903–909Google Scholar
  19. ERHSA (2001) Estudo dos recursos hídricos subterrâneos do Alentejo—Relatório Técnico. Universidade de Évora, Instituto da Água, Instituto Geológico e Mineiro, Direcção Regional do Ambiente do Alentejo, BejaGoogle Scholar
  20. European Commission (1991) Directive 91/676/EEC. Council Directive of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources. Off J Eur Commun L375:1–8Google Scholar
  21. European Commission (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off J Eur Commun L327:1–72Google Scholar
  22. Faure G, Mensing T (2005) Isotopes: principles and applications. Wiley, New JerseyGoogle Scholar
  23. Fernandes J (2001) Sistema Aquífero Monforte-Alter do Chão. Fichas dos Sistemas Aquíferos do Alentejo—Anexo II do Relatório Técnico do ERHSA (IGM). Publicado pela Comissão de Coordenação da Região Alentejo, ÉvoraGoogle Scholar
  24. Fernandes J, Francés A (2009) Sistema Aquífero Monforte-Alter do Chão: resultados obtidos no âmbito do Estudo dos Recursos Hídricos Subterrâneos do Alentejo, ERHSA. AHR Tejo, BejaGoogle Scholar
  25. Fernandes J, Ribeiro L (2001) A geomathematical approach to characterizing the spatio-temporal groundwater flow in Monforte-Alter do Chão aquifer, Portugal. In: Seiler K-P, Wohnlich S (eds) New approaches characterizing groundwater flow, vol 1. A.A. Balkema, Swets & Zeitlinger B.V., Lisse, pp 311–314Google Scholar
  26. Gonçalves F, Fernandes A (1997) Carta Geológica de Portugal na escala de 1:50000 e notícia explicativa da folha 32-B (Portalegre). Serviços Geológicos de Portugal, LisboaGoogle Scholar
  27. Gonçalves F, Zbyszewski G, Coelho A (1975) Carta Geológica de Portugal na escala de 1:50000 e notícia explicativa da folha 32-D (Sousel). Serviços Geológicos de Portugal, LisboaGoogle Scholar
  28. Guy R, Berry J, Fogel M, Hoering T (1989) Differential fractionation of oxygen isotopes by cyanide-resistant and cyanide-sensitive respiration in plants. Planta 177:483–491CrossRefGoogle Scholar
  29. Heaton THE (1986) Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review. Chem Geol 59:87–102CrossRefGoogle Scholar
  30. IAEA/WMO (2017) Global network of isotopes in precipitation. The GNIP Database. https://nucleus.iaea.org/wiser. Accessed 19 Feb 2018
  31. IPMA (2018) Normais climatológicas 1981–2010 (provisórias) de Portalegre. https://www.ipma.pt/pt/oclima/normais.clima/1981-2010/015/. Accessed 15 Dec 2017
  32. Kendall C (1998) Tracing nitrogen sources and cycles in catchments. In: Kendall C, McDonnell JJ (eds) Isotope tracers in catchment hydrology. Elsevier, Amsterdam, pp 519–576CrossRefGoogle Scholar
  33. Kendall C, McDonnell JJ (eds) (1998) Isotope tracers in catchment hydrology. Elsevier Science B.V., AmsterdamGoogle Scholar
  34. Kendall C, Elliott EM, Wankel SD (2007) Tracing anthropogenic inputs of nitrogen in ecosystems. In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science, 2nd edn. Blackwell Publishing Inc., Oxford, pp 375–449CrossRefGoogle Scholar
  35. Komor SC (1997) Boron contents and isotopic compositions of hog manure, selected fertilizers, and water in Minnesota. J Environ Qual 26:1212–1222CrossRefGoogle Scholar
  36. Kreitler CW (1979) Nitrogen isotope ratio studies of soils and groundwater nitrate from alluvial fan aquifer in Texas. J Hydrol 42:147–170CrossRefGoogle Scholar
  37. Kristensen E (1990) Characterization of biogenic organic matter by stepwise thermogravimetry (STG). Biogeochemistry 9:135–159CrossRefGoogle Scholar
  38. Lane GA, Dole M (1956) Fractionation of oxygen isotopes during respiration. Science 123:574–576CrossRefGoogle Scholar
  39. Lopes JC, Munhá JM, Wu CT, Oliveira VMJ (1998) O Complexo Plutónico de Monforte-Santa Eulália (Alentejo-NE, Portugal central): caracterização geoquímica e considerações petrogenéticas. Comun Inst Geol e Mineiro 83:127–142Google Scholar
  40. Marques JM, Carreira PM, Carvalho MR, Matias MJ, Goff FE, Basto MJ, Graça RC, Aires-Barros L, Rocha L (2008) Origins of high pH mineral waters from ultramafic rocks, Central Portugal. Appl Geochem 23(12):3278–3289CrossRefGoogle Scholar
  41. Michalski G, Kolanowski M, Rihaa KM (2015) Oxygen and nitrogen isotopic composition of nitrate in commercial fertilizers, nitric acid, and reagent salts. Isot Environ Health Stud 51:382–391CrossRefGoogle Scholar
  42. Novotny V, Olem H (1994) Water Quality: Prevention, Identification, and Management of Diffuse Pollution. Wiley, New JerseyGoogle Scholar
  43. Panno SV, Hackley KC, Hwang HH, Kelly WR (2001) Determination of the sources of nitrate contamination in karst springs using isotopic and chemical indicators. Chem Geol 179:113–128CrossRefGoogle Scholar
  44. Puig R, Soler A, Widory D, Mas-Pla J, Domènecha C, Otero N (2017) Characterizing sources and natural attenuation of nitrate contamination in the Baix Ter aquifer system (NE Spain) using a multi-isotope approach. Sci Total Environ 580:518–532CrossRefGoogle Scholar
  45. Raposo J, Nunes A (1978) Balanço Hídrico do Continente. Comissão Nacional do Ambiente, LisboaGoogle Scholar
  46. Rebelo A (2016) Origem de Nitratos na Massa de Água Monforte-Alter do Chão: Contribuição dos Solos. Projeto de Investigação, Mestrado em Geologia Aplicada, Especialização em Hidrogeologia. Faculd. Ciências. Universidade Lisboa, LisboaGoogle Scholar
  47. Sacchi E (2013) Origin and fate of nitrates in groundwater from the central Po Plain: insights from isotopic investigations. Appl Geochem 34:164–180CrossRefGoogle Scholar
  48. Tirez K, Brusten W, Widory D, Petelet E, Bregnot A, Xue D, Boeckx P, Bronders J (2010) Boron isotope ratio (δ11B) measurements in Water Framework Directive monitoring programs: comparison between double focusing sector field ICP and thermal ionization mass spectrometry. J Anal Atom Spectrom 25:964–974CrossRefGoogle Scholar
  49. Vane CH, Kim AW, McGowan S, Leng MJ, Heaton THE, Kendrick CP, Coombs P, Yang H, Swann GEA (2010) Sedimentary records of sewage pollution using faecal markers in contrasting peri-urban shallow lakes. Sci Total Environ 409:345–356CrossRefGoogle Scholar
  50. Vengosh A (1998) Boron isotopes and groundwater pollution. Water Environ News 3:15–16Google Scholar
  51. Vengosh A, Heumann KG, Juraske S, Kasher R (1994) Boron isotope application for tracing sources of contamination in groundwater. Environ Sci Technol 28:1968–1974CrossRefGoogle Scholar
  52. Vengosh A, Barth S, Heumann KG, Eisenhut S (1999) Boron isotopic composition of freshwater lakes from Central Europe and possible contamination sources. Acta Hydrochim Hydrobiol 27:416–421CrossRefGoogle Scholar
  53. Vitòria L, Otero N, Soler A, Canals A (2004) Fertilizer characterization: isotopic data (N, S, O, C, and Sr). Environ Sci Technol 38:3254–3262CrossRefGoogle Scholar
  54. Widory D, Kloppmann W, Chery L, Bonnin J, Rochdi H, Guinamant JL (2004) Nitrate in groundwater, an isotopic multi-tracer approach. J Contam Hydrol 72:165–188CrossRefGoogle Scholar
  55. Widory D, Petelet-Giraud E, Negrel P, Ladouche B (2005) Tracking the sources of nitrate in groundwater using coupled nitrogen and boron isotopes: a synthesis. Environ Sci Technol 39:539–548CrossRefGoogle Scholar
  56. Xue D, Botte J, De Baets B, Accoe F, Nestler A, Taylor P, Van Cleemput O, Berglund M, Boeckx P (2009) Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater. Water Res 43:1159–1170CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Departamento de Geologia, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
  2. 2.Instituto D. Luiz, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal

Personalised recommendations