Sustainable Water Resources Management

, Volume 5, Issue 4, pp 1419–1434 | Cite as

Assessing the vulnerability of groundwater resources in semiarid lands of central Argentina

  • Jorgelina Ceferina Montoya
  • Carolina PorfiriEmail author
  • Zinda Edith Roberto
  • Ernesto Francisco Viglizzo
Original Article


Groundwater resources in semiarid lands of central Argentina are currently threatened by contamination from agricultural pesticides. The objectives of the present work were: (a) to estimate groundwater recharge on a monthly basis to identify periods of high susceptibility of the aquifers to be polluted, (b) to assess groundwater vulnerability to pollution using the Generic and Pesticides DRASTIC GIS-based model for each recharge month previously identified, (c) to quantify the presence of atrazine, imazapyr, glyphosate, and its metabolite AMPA in groundwater, and (d) to check the application of the DRASTIC model in the semiarid lands of central Argentina. According to the estimation of groundwater recharge, the vulnerability of aquifers increases during March, April, and November. The six resultant vulnerability maps revealed that groundwater is under “high-to-moderate” risk of pollution in the study area. About 47 and 88% of the total area is highly vulnerable, according to the Generic and Pesticides DRASTIC maps, respectively. Atrazine and imazapyr were quantified in groundwater at concentrations greater than 0.1 µg l−1 in four of the analyzed compounds. Potential pollution of groundwater was conditioned by the spatial variability of geomorphological features, and influenced by others variables such as the intensity of herbicides use and the physicochemical properties of the compounds. In the present study, groundwater pollution is in line with the DRASTIC maps.


Vulnerability Groundwater Semiarid Recharge Herbicide residues 



The authors of this paper would like to thank the National Institute of Agricultural Technology (INTA) for the financial support of this research. Lorena Verónica Carreño is thanked for English language revision of the manuscript.


  1. Aktar M, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2:1–12CrossRefGoogle Scholar
  2. Alderwish AM, Dottridge J (1998) Recharge components in a semi-arid area: the Sana’a Basin, Yemen. In: Robins NS (ed) Groundwater pollution, aquifer recharge and vulnerability. Geological Society, Special Publications, London, pp 169–177Google Scholar
  3. Allen RG, Smith M, Perrier A, Pereira A (1994) An update for the calculation of reference evapotranspiration. ICID Bull 43:34–92Google Scholar
  4. Aller L, Bennet T, Leher JH, Petty RJ, Hackett GDRASTIC (1987) A standardized system for evaluating groundwater pollution potential using hydrogeologic settings. In: US Environmental Protection Agency report (EPA/600/2-87/035), p 622Google Scholar
  5. Alvarez R, Steinbach HS (2009) A review of the effects of tillage systems on some soil physical properties, watercontent, nitrate availability and crops yield in the Argentine Pampas. Soil Tillage Res 104:1–15Google Scholar
  6. Asare-Donkor NK, Boadu TA, Adimado AA (2016) Evaluation of groundwater and surface water quality and human risk assessment for trace metals in human settlements around the Bosomtwe Crater Lake in Ghana, vol 5. Springerplus, New York, p 1812Google Scholar
  7. Auge MP (2005) Hidrogeología de La Plata, Provincia de Buenos Aires. In: Relatorio XVI Congreso Geológico Argentino, La Plata, pp 293–311, ISBN 987-22403-0-2Google Scholar
  8. Battaglin WA, Furlong ET, Burkhardt MR, Peter CJ (1998) Occurrence of sulfonylurea, sulfonamide, imidazolinone, and other herbicides in rivers, reservoirs, and ground water, in Midwestern United States. Sci Total Environ 248:123–133Google Scholar
  9. Battaglin WA, Meyer MT, Kuivaila KM, Dietze JE (2014) Glyphosate and its degradation product AMPA occur frequently and widely in U.S. soils, surface water, groundwater and precipitation. J Am Water Resour As 50:275–290Google Scholar
  10. Boukari A, Habaieb H, Deliège J-F (2017) Assessment of surface water vulnerability to pesticide contamination using the modeling tool PegOpera: application in North Tunisia. EGU Gen Assem Geophys Res Abstr 19:17184Google Scholar
  11. Boulding JR, Ginn JS (2004) Ground water and vadose zone hydrology. In: Soil, vadose zone, and ground-water contamination: practical handbook of assessment, prevention and remediation, 2nd edn. CRC Press, LondonGoogle Scholar
  12. Cano E, Casagrande G, Conti H, Salazar J, Plaza Lea P, Zubiarte C, Maldonado Pinedo D, Martínez H, Hevia R, Scoppa C, Fernández B, Montes M, Musto J, Pittaluga A (1980) Inventario Integrado de los Recursos Naturales de la Provincia de La Pampa. INTA, Provincia de La Pampa, UNLPam, Buenos AiresGoogle Scholar
  13. Castro E, Schulz C (2009). Aportes de la Hidrogeología al conocimiento de los Recursos Hídricos. In: Mariño E, Schulz C (eds) Hidrogoelogía y Modelo conceptual del acuífero detrítico de Intendente Alvear y Ceballos, La Pampa. Argentina. Tomo 1. AIH Grupo Argentino-Amerindia, Buenos Aires-Santa Rosa, pp 25–34, ISBN 978-987-1082-36Google Scholar
  14. Civita M, De Maio M (2000) Valutazione e cartografia automatica degli acquiferi all’inquinamento con il sistema parametrico SINTACS R5. Pitagora Editore, BolognaGoogle Scholar
  15. Delwiche KA, Lehmann J, Walter JM (2014) Atrazine leaching from biochar-amended soils. Chemosphere 95:346–352Google Scholar
  16. Díaz-Zorita M, Duarte GA, Grove JH (2002) A review of no-till systems and soil management for sustainable crop production in the subhumid and semiarid Pampas of Argentina. Soil Till Res 65:1–18Google Scholar
  17. Ersoy AF, Gültekin F (2013) DRASTIC-based methodology for assessing groundwater vulnerability in the Gümüşhacıköy and Merzifon basin (Amasya, Turkey). Earth Sci Res SJ 17:33–40Google Scholar
  18. Fernandez R, Quiroga A, Noellenmeyer E, Funaro D, Montoya J, Peineman N (2008) The effect of residue cover on soil water storage during fallow in molisolls of the central semiarid region of Argentina. Agric Water Manag 95:1028–1040Google Scholar
  19. Forte Lay JA, Aiello JL, Kuba J (1996) Software AGROAGUA versión 4.0. Congreso Agrosoft‘95. Juiz de Fora (Brasil). Revista Agrosoft‘95.
  20. Giai SB, Visconti G (2002) Notas sobre el comportamiento hidrogeológico de la tosca. Groundwater and human development. In: Bocanegra E, Martinez D, Mazzone H (eds) Mar del Plata, Argentina, pp 645–651. ISBN 987-544-063Google Scholar
  21. Giai S, Visconti G, Peinetti H (2002) La formación de falsas capas freáticas en Eduardo Castex, Provincia de La Pampa. Huellas 7:66–82Google Scholar
  22. Guzzella L, Pozzoni F, Giuliano G (2006) Herbicide contamination of surficial groundwater in Northern Italy. Environ Pollut 142: 344 – 35Google Scholar
  23. Hendrickx JMH, Walker GR (1997) Recharge from precipitation, chap 2. In: Simmers I (ed) Recharge of phreatic aquifers in (semi-) arid areas. International Association of Hydrologysts. AA, Balkema/Rotterdam/Brookfield, pp 19–114Google Scholar
  24. Hernández Bocquet R (2009) Cuencas y regiones hídricas de la provincia de La Pampa. Dirección de Investigación Hídrica, Secretaría de Recursos Hídricos, La Pampa.
  25. Herwing U, Klummp E, Narres HD, Schuger MJ (2001) Physicochemical interaction between atrazine and clay minerals. Appl Clay Sci 18:211–222Google Scholar
  26. Iriondo M (1990) Map of the South American plains - Its present state. In: Rabassa J (ed) Quat S Am A. Balkema A.A. Publishers, Rotterdam, pp 297–308Google Scholar
  27. Jobbágy EG, Nosetto MD, Santoni CS, Baldi G (2008) El desafío ecohidrológico de las transiciones entre sistemas leñosos y herbáceos en la llanura Chaco-Pampeana. Ecol Austral 18:305–322Google Scholar
  28. Kennett-Smith A, Cook PG, Walker GR (1994) Factors affecting groundwater recharge following clearing in the South Western Murray Basin. J Hydrol 154:85–105Google Scholar
  29. Kruger EL, Somasundaran L, Kanwar RS, Coat JR (1993) Persistence and degradation of [14C] atrazine and [14C] deisopropylatrazineas affected by soil depth and moisture conditions. Environ Toxicol Chem 12:1959–1967Google Scholar
  30. Lamastra L, Balderacchi M, Trevisan M (2016) Inclusion of emerging organic contaminants in groundwater monitoring plans. MethodsX 3:459–476Google Scholar
  31. Lee S (2003) Evaluation of waste disposal site using the DRASTIC system in southern Korea. Environ Geol 44:654–664Google Scholar
  32. Liggett ST (2009) Assessments and integrated water resource management groundwater vulnerability assessments and integrated water resource management. Peer-reviewed synthesis article. Watershed Manag Bull 13:18–29Google Scholar
  33. Linares E, Llambías EJ, Latorre CO 1980 Geología de la provincia de La Pampa, República Argentina y geocronología de sus rocas metamórficas y eruptivas. Asociación Geológica Argentina, Revista XXXV, pp 87–146Google Scholar
  34. Lobo Ferreira JP, Oliveira MM (1998) Assessment of groundwater vulnerability to pollution using the drastic method. Application to the alqueva area. In: Gowing J, Pereira LS (eds) Water and the environment: innovation issues in irrigation and drainage, pp 103–110Google Scholar
  35. Lobo-Ferreira JP (2000) GIS and mathematical modelling for the assessment of groundwater vulnerability to pollution: application to two Chinese case-study areas. In: Ecosystem service and sustainable watershed management in North China international conference, Beijing, 23–25 August 2000Google Scholar
  36. Lorda H, Roberto Z, Bellini Saibene Y, Sipowicz A, Belmonte ML (2008) Descripción de zonas y subzonas agroecológicas RIAP. Área de Influencia de la EEA Anguil. Boletín de divulgación técnica no. 96. Ediciones INTA, ISSN 325-2197Google Scholar
  37. Malán JM (1983) Estudio hidrogeológico para el abastecimiento de agua potable a la localidad de General Pico, departamento Maracó, provincia de La Pampa. Informe Preliminar. Coloquio de Hidrología de Grandes Llanuras, Olavarría. Actas III, pp 1449–1457Google Scholar
  38. Mangels G (1991) Behavior of imidazolinone herbicides in soil: a review of literature. In: shaner DL, O’Connor SL (eds) The imidazolinones Herbicides. CRC Press, Boca Raton, pp 191–209Google Scholar
  39. Mariño EE, Schulz CJ (2008) Importancia de los acuíferos en ambiente medanoso en la región semiárida pampeana. Huellas 12:113–127Google Scholar
  40. Martínez DE, Osterrieth M (2013) Hydrogeochemistry and pollution effects of an aquifer in Quaternary loess like sediments in the ladling area of Mar del Plata. Argent Rev Fac Ing Univ Antioq 66:9–23Google Scholar
  41. Miglianelli CH (1984) Resumen del estudio especial del acuífero de Speluzzi. Rev Pampa Geol 3:15–27Google Scholar
  42. Mohammad AH (2017) Assessing the groundwater vulnerability in the upper aquifers of Zarqa River Basin, Jordan using DRASTIC, SINTACS and GOD methods. Int J Water Resour Environ Eng 9:44–53Google Scholar
  43. O’Dell JD, Wolt JD, Jardine PJ (1992) Transport of imazethapyr in undisturbed soil columns. Soil Sci Soc Am J 56:1711–1715Google Scholar
  44. Özkara A, Akyıl D, Konuk M (2016) Pesticides, environmental pollution, and health. In: Larramendy ML, Soloneski S (eds) Environmental health risk-hazardous factors to living species. InTech. Google Scholar
  45. Poehls DJ, Smith GJ (2009) Encyclopedic dictionary of hydrogeology. In: Ganus WJ, Hurst RW, Smith L (eds) Hydrogeology, 1st edn. Academic Press, LondonGoogle Scholar
  46. Porfiri C, Montoya JC, Koskinen WC, Azcarate MP (2015) Adsorption and transport of imazapyr through intact soil columns taken from two soils under two tillage systems. Geoderma 251–252:1–9Google Scholar
  47. Rahman A (2008) A GIS based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Aligarh, India. Appl Geogr 28:32–53Google Scholar
  48. Regitano JB, da Rocha WSD, Alleoni LRF (2005) Soil pH on mobility of imazaquin in oxisols with positive balance of charges. J Agric Food Chem 53:4096–4102Google Scholar
  49. Roberto Z, Tulio J, Malan J (2008) Cartografía de agua subterránea para uso ganadero de La Pampa. Publicación Técnica no. 73. ISSN 0325-2132Google Scholar
  50. Robins NS (1998) Recharge: the key to groundwater pollution and aquifer vulnerability. In: Robins NS (ed) Groundwater pollution, recharge aquifer and vulnerability. Geological Society, Special Publications, London, pp 1–5Google Scholar
  51. Rocca RJ, Redolfi ER, Terzariol RE (2006) Características geotécnicas de los loess de Argentina. Rev Int Desastres Nat Accid Infraestruct Civil 6:149–166Google Scholar
  52. SAGPyA (2001) Estimaciones agricola. Bs. As. Argentina.
  53. SAGyP-INTA (1990) Atlas de Suelos de la República Argentina. In: UNPD project. Arg-85/019, Buenos Aires (two volumes, 39 maps)Google Scholar
  54. Saidi S, Bouri S, Dhia HB (2010) Groundwater vulnerability and risk mapping of the Hajeb-jelma aquifer (Central Tunisia) using a GIS-based DRASTIC model. Environ Earth Sci 59:1579–1588Google Scholar
  55. Salas JD (2000) Hidrología de Zonas Áridas y Semiáridas. Ed: Fundación para el Fomento de la Ingeniería del Agua., pp 409–429. ISSN 1134-2196Google Scholar
  56. Satpute SS, Parkale S, Kashid LM (2000) Study of sorption behavior of atrazine toward soil. Int J Environ Sci 6:1–11Google Scholar
  57. Schwab AP, Splichal PA, Banks MK (2006) Persistence of atrazine and alachlor in ground water aquifers and soil. Water Air Soil Pollut 171:203–235Google Scholar
  58. Shakerkhatibi M, Mosaferi M, Asghari Jafarabadi M, Lotfi E, Belvasi M (2014) Pesticides residue in drinking groundwater resources of rural areas in the northwest of Iran 30:195–205Google Scholar
  59. Shirazi SM, Imran HM, Shatiram A (2012) GIS-based DRASTIC method for groundwater vulnerability assessment: a review. J Risk Res 15:1–21Google Scholar
  60. Shomar BH, Muller G, Yahya A (2006) Occurrence of peticides in groundwater and topsoil of the Gaza Strop. Water Air Soil Pollut 171:237–251Google Scholar
  61. Simmers I (1997) Groundwater recharge principles, problems and developments. In: Simmers I (ed) Recharge of phreatic aquifers in (semi-) arid areas. International Association of Hydrogeologists. AA, Balkema/Rotterdam/Brookfield, pp 1–18Google Scholar
  62. Smedley PL, Macdonald DMJ, Nicolli HB, Barros AJ, Tullio J, Pearce JM (2000) Arsenic and other quality problems in groundwater from northern La Pampa Province, Argentina. In: Overseas geology series. Technical report WC/99/36Google Scholar
  63. Soriano A, Leon RJC, Sala OE, Lavado RS, Deregibus VA, Cahuepe M, Scaglia OA, Velázquez CA, Lemcoff JH (1991) Río de la Plata grasslands. In: Cou-pland RT (ed) Natural grasslands: introduction and western Hemisphere. Ecosystems of the World 8A. Elsevier, Amsterdam, pp 367–407Google Scholar
  64. Székács A, Mörtl M, Darvas Bv (2015) Monitoring pesticide residues in surface and ground water in Hungary: surveys in 1990–2015. J Chem ID 717948:1–15Google Scholar
  65. Tanco R, Kruse E (2001) Prediction of seasonal water-table fluctuations in La Pampa and Buenos Aires, Argentina. Hydrogeol J 9:339–347Google Scholar
  66. Tappe W, Groeneweg J, Jantsch B (2002) Diffuse atrazine pollution in German aquifers. Biodegradation 13:3–10Google Scholar
  67. Thornthwaite CW (1948) An aproach Howard a rational classification of climate. Geographic Rev N Y 38:55–94Google Scholar
  68. Tilahun K, Merkel BJ (2010) Assessment of groundwater vulnerability to pollution in Dire Dawa, Ethiopia using DRASTIC. Environ Earth Sci 59:1485–1496Google Scholar
  69. Van Maanen JM, De Vaan MA, Veldstra AW, Hendrix WP (2001) Pesticides and nitrate in groundwater and rainwater in the Province of Limburg in The Netherlands. Environ Monit Assess 72:95–114Google Scholar
  70. Viglizzo EF, Frank FC. Carreño LV, Jobbágy EG, Pereyra H, Clatt J, Pincen D, Ricard MF (2011) Ecological and environmental footprint of 50 years of agricultural expansion in Argentina. Glob Change Biol 17:959–973Google Scholar
  71. Vonberg D, Vanderborght J, Cremer N, Pütz T, Herbst M, Vereecken H (2014) 20 years of long-term atrazine monitoring in a shallow aquifer in western Germany. Water Res 50:294–330Google Scholar
  72. Vrba J (2002) The impact of aquifer intensive use on groundwater quality. In: Llamas R, Custodio E (eds) Intensive use of groundwater. A.A. Balkema Publishers, Lisse, pp 113–132Google Scholar
  73. Walkowiak AM, Solana E (1989) Distribución estacional de lluvias en baja California, México. Análisis de probabilidades. Atmósfera 2:209–218Google Scholar
  74. Wen X, Wu J, Si J (2009) GIS-based DRASTIC model for assessing shallow groundwater vulnerability in the Zhangye Basin, Northwestern China. Environ Geol 57:1435–1442Google Scholar
  75. Zárate MA (2003) Loess of southern South America. Q Sci Rev 22:1987–2006Google Scholar
  76. Zelaya MJ, Gianelli V, Costa JL , Aparicio V, Okada E, Gomez Ortiz AM (2011) Determination of glyphosate and AMPA in water by pre-column derivatization with 9- fluorenylmethylchloroformate and UPLC-MSMS. 3° workshop latinoamericano sobre residuos pesticidas en alimentosy medio ambiente. Montevideo, Uruguay. Publicado en libro de resúmenes del congreso, p 115Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jorgelina Ceferina Montoya
    • 1
  • Carolina Porfiri
    • 1
    Email author
  • Zinda Edith Roberto
    • 1
  • Ernesto Francisco Viglizzo
    • 2
  1. 1.Instituto Nacional de Tecnologia AgropecuariaAnguilArgentina
  2. 2.CONICET/INCITAP Instituto de investigaciones en ciencias de la tierra y el ambiente productivoSanta RosaArgentina

Personalised recommendations