Adolescent Research Review

, Volume 4, Issue 4, pp 341–356 | Cite as

The Effect of Visual Stressors on Adolescents’ Neural Response: A Review of Laboratory Research

  • Orianna DuncanEmail author
  • Emily C. Cook
  • Donald Pimental
  • Kristen Wilkinson
  • Amber Champagne
Systematic Review


Laboratory models that help us understand the neural mechanisms associated with how stress, particularly interpersonal stress, affects children’s and adolescents’ emotions are paramount but are limited if that understanding lacks validity in adolescents’ daily lives. There is a lack of research that addresses the ecological validity of visual stimuli to induce stress in participants while measuring participants’ neural response to that stimuli. This approach is needed if we are to identify the neural mechanisms that underlie the effect of stressful events on individuals’ emotional functioning. The current study conducted a systematic literature review to identify visual tasks that have been used in laboratory settings to induce stress in participants. The most frequent tasks identified were developed to induce peer rejection/exclusion in youth (e.g., Chatroom and Cyberball). These tasks were generally effective at bringing about a neural response in areas of the brain traditionally associated with social cognitive processing, such as the cingulate cortex, prefrontal cortex, insula, and striatum. In particular, the cingulate cortex and prefrontal cortex are associated with the Social Information Processing Network. Almost entirely absent from the literature are systematic evaluations of ecological validity and parent–child based visual stimuli that approximate the stress that adolescents might experience in their relationships with parents. The present article highlights trends and gaps in the current research, and examines the ecological validity of current stimuli used as laboratory based stressors, which can be used to fuel further investigation into adolescent neural response to stimuli, and further evaluation of the ecological validity of tasks.


Emotions Ecological Validity Neural Response Stress Visual Stimuli 



Support for this project was provided by the Institutional Development Award (IDeA) Network for Biomedical Research Excellence from the National Institute of General Medical Sciences of the National Institutes of Health under grant number P20GM103430.

Authors Contributions

ECC conceived of the study, OD, DP, KW, and AC assisted in the finding of articles, and OD, DP, KW, and AC assisted in the initial write up of the entire article. ECC and OD continued to make edits and revise the article, until its submission. All authors have read and approved of the final submission of this article.

Compliance with Ethical Standards

Conflict of interest

The authors report no conflicts of interest.


  1. Allwood, M. A., Handwerger, K., Kivlighan, K. T., Granger, D. A., & Stroud, L. R. (2011). Direct and moderating links of salivary alpha-amylase and cortisol stress-reactivity to youth behavioral and emotional adjustment. Biological Psychology, 88(1), 57–64.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bokhorst, C. L., Sumter, S. R., & Westenberg, P. M. (2010). Social support from parents, friends, classmates, and teachers in children and adolescents aged 9 to 18 years: Who is perceived as most supportive? Social Development, 19(2), 417–426.CrossRefGoogle Scholar
  3. Bolling, D. Z., Pitskel, N. B., Deen, B., Crowley, M. J., Mayes, L. C., & Pelphrey, K. A. (2011). Development of neural systems for processing social exclusion from childhood to adolescence. Developmental Science, 14(6), 1431–1444.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Breedlove, S. M., & Watson, N. V. (2017). Chapter 15, Emotions, Aggression, and Stress. In Behavioral neuroscience (8th edn.). S.l.: Oxford University Press, Oxford.Google Scholar
  5. Bronfenbrenner, U. (1977). Toward an experimental ecology of human development. American Psychologist, 32(7), 513–531.CrossRefGoogle Scholar
  6. Calvo, M. G., & Gutierrez-Garcia, A. (2016). Cognition and stress. In Stress: Concepts, Cognition, Emotion, and Behavior (pp. 139–144).Google Scholar
  7. Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: a review of its functional anatomy and behavioural correlates. Brain, 129(3), 564–583.PubMedCrossRefGoogle Scholar
  8. Chen, J. E., & Glover, G. H. (2015). Functional magnetic resonance imaging methods. Neuropsychology Review, 25(3), 289–313.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Chester, D. S., Eisenberger, N. I., Pond, R. S., Richman, S. B., Bushman, B. J., & DeWall, C. N. (2013). The interactive effect of social pain and executive functioning on aggression: an fMRI experiment. Social Cognitive and Affective Neuroscience, 9(5), 699–704.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Chida, Y., & Hamer, M. (2008). Chronic psychosocial factors and acute physiological responses to laboratory-induced stress in healthy populations: a quantitative review of 30 years of investigations. Psychological Bulletin, 134(6), 829–885.PubMedCrossRefGoogle Scholar
  11. Colich, N. L., Kircanski, K., Foland-Ross, L. C., & Gotlib, I. H. (2015). HPA-axis reactivity interacts with stage of pubertal development to predict the onset of depression. Psychoneuroendocrinology, 55, 94–101.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Collignon, O., Dormal, G., Albouy, G., Vandewalle, G., Voss, P., Phillips, C., & Lepore, F. (2013). Impact of blindness onset on the functional organization and the connectivity of the occipital cortex. Brain, 136(9), 2769–2783.PubMedCrossRefGoogle Scholar
  13. Costa, V. D., Lang, P. J., Sabatinelli, D., Versace, F., & Bradley, M. M. (2010). Emotional imagery: assessing pleasure and arousal in the brain’s reward circuitry. Human brain Mapping, 31(9), 1446–1457.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Costello, E. J., Egger, H. L., Copeland, W., Erkanli, A., & Angold, A. (2011). The developmental epidemiology of anxiety disorders: phenomenology, prevalence, and comorbidity. Anxiety Disorders in Children and Adolescents, 2, 56–75.CrossRefGoogle Scholar
  15. Craig, A. D., & Craig, A. D. (2009). How do you feel–now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10(1), 59–70.PubMedCrossRefGoogle Scholar
  16. Dahl, R. E. (2004). Adolescent brain development: A period of vulnerabilities and opportunities. Annual N.Y. Academy of Sciences, 1021, 1–22.CrossRefGoogle Scholar
  17. Dickerson, S. S., & Kemeny, M. E. (2004). Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130(3), 355–391.PubMedCrossRefGoogle Scholar
  18. Everly, G. S. Jr., & Lating, J. M. (2012). A clinical guide to the treatment of the human stress response. Springer Science & Business Media.Google Scholar
  19. Everly, G. S., & Lating, J. M. (2013). The anatomy and physiology of the human stress response. In A clinical guide to the treatment of the human stress response (pp. 17–51). New York: Springer.CrossRefGoogle Scholar
  20. Foley, P., & Kirschbaum, C. (2010). Human hypothalamus–pituitary–adrenal axis responses to acute psychosocial stress in laboratory settings. Neuroscience & Biobehavioral Reviews, 35(1), 91–96.CrossRefGoogle Scholar
  21. Furman, D. J., Hamilton, J. P., Joormann, J., & Gotlib, I. H. (2010). Altered timing of amygdala activation during sad mood elaboration as a function of 5-HTTLPR. Social Cognitive and Affective Neuroscience, 6(3), 270–276.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Groschwitz, R. C., Plener, P. L., Groen, G., Bonenberger, M., & Abler, B. (2016). Differential neural processing of social exclusion in adolescents with non-suicidal self-injury: An fMRI study. Psychiatry Research: Neuroimaging, 255, 43–49.PubMedCrossRefGoogle Scholar
  23. Gross, J. J. (1998). Antecedent-and response-focused emotion regulation: divergent consequences for experience, expression, and physiology. Journal of Social and Personality Psychology, 74, 224–237.CrossRefGoogle Scholar
  24. Gunnar, M., & Quevedo, K. (2007). The neurobiology of stress and development. Annual Rev. Psychol., 58, 145–173.PubMedCrossRefGoogle Scholar
  25. Gunnar, M. R., Wewerka, S., Frenn, K., Long, J. D., & Griggs, C. (2009). Developmental changes in hypothalamus- pituitary-adrenal activity over the transition to adolescence: normative changes and associations with puberty.. Developmental Psychopathology, 21, 69–85.CrossRefGoogle Scholar
  26. Guyer, A. E., McClure-Tone, E. B., Shiffrin, N. D., Pine, D. S., & Nelson, E. E. (2009). Probing the neural correlates of anticipated peer evaluation in adolescence. Child Development, 80(4), 1000–1015.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Immordino-Yang, M. H., & Singh, V. (2013). Hippocampal contributions to the processing of social emotions. Human Brain Mapping, 34(4), 945–955.PubMedCrossRefGoogle Scholar
  28. Karatekin, C. (2007). Eye tracking studies of normative and atypical development. Developmental Review, 27(3), 283–348.CrossRefGoogle Scholar
  29. Kemeny, M. E. (2003). The psychobiology of stress. Current Directions in Psychological Science, 12(4), 124–129.CrossRefGoogle Scholar
  30. Kidd, T., Carvalho, L. A., & Steptoe, A. (2014). The relationship between cortisol responses to laboratory stress and cortisol profiles in daily life. Biological Psychology, 99, 34–40. Scholar
  31. Klimes-Dougan, B., Hastings, P. D., Granger, D. A., Usher, B. A., & Zahn-Waxler, C. (2001). Adrenocortical activity in at-risk and normally developing adolescents: Individual differences in salivary cortisol basal levels, diurnal variation, and responses to social challenges. Development and Psychopathology, 13(3), 695–719.PubMedCrossRefGoogle Scholar
  32. Kudielka, B. M., & Kirschbaum, C. (2005). Sex differences in HPA axis responses to stress: a review. Biological Psychology, 69(1), 113–132.PubMedCrossRefGoogle Scholar
  33. Latham, M. D., Cook, N., Simmons, J. G., Bryne, M., Kettle, J. W. L., Schwartz, O., Vijayakumar, N., Whittle, S., & Allen, N. B. (2017). Physiological correlates of emotional reactivity and regulation in early adolescents. Biological Psychology, 127, 229–238.PubMedCrossRefGoogle Scholar
  34. Leech, R., Braga, R., & Sharp, D. J. (2012). Echoes of the brain within the posterior cingulate cortex. Journal of Neuroscience, 32(1), 215–222.PubMedCrossRefGoogle Scholar
  35. Marusak, H. A., Carré, J. M., & Thomason, M. E. (2013). The stimuli drive the response: An fMRI study of youth processing adult or child emotional face stimuli. NeuroImage, 83, 679–689.PubMedCrossRefGoogle Scholar
  36. Maruyama, Y., Kawano, A., Okamoto, S., Ando, T., Ishitobi, Y., Tanaka, Y., Inoue, A., Imanaga, J., Kanehisa, M., Higuma, H., Ninomiva, J., Tsuru, J., Hanada, H., & Akiyoshi, J. (2012). Differences in salivary alpha-amylase and cortisol responsiveness following exposure to electrical stimulation versus the Trier Social Stress Tests. PLoS One, 7(7), 1–10.CrossRefGoogle Scholar
  37. Masten, A. S., Cutuli, J. J., Herbers, J. E., & Reed, M. G. J. (2012). Resilience in Development. In The Oxford Handbook of Positive Psychology, (2 Ed.) Oxford University Press.
  38. Masten, C. L., Eisenberger, N. I., Borofsky, L. A., Pfeifer, J. H., McNealy, K., Mazziotta, J. C., & Dapretto, M. (2009). Neural correlates of social exclusion during adolescence: understanding the distress of peer rejection. Social Cognitive and Affective Neuroscience, 4(2), 143–157.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Masten, C. L., Eisenberger, N. I., Pfeifer, J. H., & Dapretto, M. (2010). Witnessing peer rejection during early adolescence: Neural correlates of empathy for experiences of social exclusion. Social Neuroscience, 5(5–6), 496–507.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Masten, C. L., Telzer, E. H., Fuligni, A. J., Lieberman, M. D., & Eisenberger, N. I. (2012). Time spent with friends in adolescence relates to less neural sensitivity to later peer rejection. Social Cognitive and Affective Neuroscience, 7(1), 106–114.PubMedCrossRefGoogle Scholar
  41. McCormick, C., Ciaramelli, E., De Luca, F., & Maguire, E. A. (2017). Comparing and contrasting the cognitive effects of hippocampal and ventromedial prefrontal cortex damage: A review of human lesion studies. Neuroscience., 374, 295–218.PubMedCrossRefGoogle Scholar
  42. Moor, B. G., Güroğlu, B., de Macks, Z. A. O., Rombouts, S. A., Van der Molen, M. W., & Crone, E. A. (2012). Social exclusion and punishment of excluders: neural correlates and developmental trajectories. Neuroimage, 59(1), 708–717.PubMedCrossRefGoogle Scholar
  43. Morris, A. S., Silk, J. S., Steinberg, L., Myers, S. S., & Robinson, L. R. (2007). The role of the family context in the development of emotion regulation. Social Development, 16(2), 361–388.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Nelson, E. E., Leibenluft, E., McClure, E. B., & Pine, D. S. (2005). The social re-orientation of adolescence: a neuroscience perspective on the process and its relation to psychopathology. Psychological Medicine, 35(2), 163–174.PubMedCrossRefGoogle Scholar
  45. Noble, K. G., Houston, S. M., Brito, N. H., Bartsch, H., Kan, E., Kuperman, J. M., Akshoomoff, N., Amaral, D. G., Bloss, C. S., Libiger, O., Schork, N. J., Murray, S. S., Casey, B. J., Chang, L., Ernst, T. M., Frazier, J. A., Gruen, J. R., Kennedy, D. N., Can Zijl, P., Mostofsky, S., Kaufmann, W. E., Kenet, T., Dale, A. M., Jernigan, T. L., & Sowell, E. R. (2015). Family income, parental education and brain structure in children and adolescents. Nature Neuroscience, 18(5), 773–778.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Ochsner, K. N., & Gross, J. J. (2005). The cognitive control of emotion. Trends in Cognitive Sciences, 9(5), 242–249.PubMedCrossRefGoogle Scholar
  47. Olino, T. M., Silk, J. S., Osterritter, C., & Forbes, E. E. (2015). Social reward in youth at risk for depression: A preliminary investigation of subjective and neural differences. Journal of Child and Adolescent Psychopharmacology, 25(9), 711–721.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Pervanidou, P., & Chrousos, G. P. (2012). Metabolic consequences of stress during childhood and adolescence. Metabolism-Clinical and Experimental, 61(5), 611–619.PubMedCrossRefGoogle Scholar
  49. Pryce, C. R. (2008). Postnatal ontogeny of expression of the corticosteroid receptor genes in mammalian brains: Inter-species and intra-species differences. Brain Research Reviews, 57(2), 596–605.PubMedCrossRefGoogle Scholar
  50. Reis, H. T., & Judd, C. M. (2000). Handbook of research methods in social and personality psychology. Cambridge University Press.Google Scholar
  51. Robles, T. F., Shetty, V., Zigler, C. M., Glover, D. A., Elashoff, D., Murphy, D., & Yamaguchi, M. (2011). The feasibility of ambulatory biosensor measurement of salivary alpha amylase: relationships with self-reported and naturalistic psychological stress. Biological Psychology, 86(1), 50–56.PubMedCrossRefGoogle Scholar
  52. Romeo, R. D., & Karatsoreos, I. N. (2011). Adolescence and Stress. The Handbook of Stress: Neuropsychological Effects on the Brain, 267–284.Google Scholar
  53. Schmuckler, M. A. (2001). What is ecological validity? A dimensional analysis. Infancy, 2(4), 419–436.CrossRefGoogle Scholar
  54. Sebastian, C. L., Tan, G. C., Roiser, J. P., Viding, E., Dumontheil, I., & Blakemore, S. J. (2011). Developmental influences on the neural bases of responses to social rejection: implications of social neuroscience for education. Neuroimage, 57(3), 686–694.PubMedCrossRefGoogle Scholar
  55. Sheeber, L., Allen, N., Davis, B., & Sorensen, E. (2000). Regulation of negative affect during mother–child problem-solving interactions: Adolescent depressive status and family processes. Journal of Abnormal Child Psychology, 28(5), 467–479.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Siegle, G. J., Steinhauer, S. R., Stenger, V. A., Konecky, R., & Carter, C. S. (2003). Use of concurrent pupil dilation assessment to inform interpretation and analysis of fMRI data. Neuroimage, 20, 114–124.PubMedCrossRefGoogle Scholar
  57. Silk, J. S., Stroud, L. R., Siegle, G. J., Dahl, R. E., Lee, K. H., & Nelson, E. E. (2012). Peer acceptance and rejection through the eyes of youth: pupillary, eyetracking and ecological data from the Chatroom Interact task. Social Cognitive and Affective Neuroscience, 7(1), 93–105.PubMedCrossRefGoogle Scholar
  58. Spear, L. P. (2000). The adolescent brain and age-related behavioral manifestations. Neuroscience & Biobehavioral Reviews, 24(4), 417–463.CrossRefGoogle Scholar
  59. Spear, P. L. (2010). The Behavioral Neuroscience of Adolescence. W.W.Norton & Company. New York:NY.Google Scholar
  60. Steptoe, A., Hamer, M., & Chida, Y. (2007). The effects of acute psychological stress on circulating inflammatory factors in humans: A review and meta-analysis. Brain, Behavior, and Immunity, 21(7), 901–912.PubMedCrossRefGoogle Scholar
  61. Stevens, F. L., Hurley, R. A., & Taber, K. H. (2011). Anterior cingulate cortex: unique role in cognition and emotion. The Journal of Neuropsychiatry and Clinical Neurosciences, 23(2), 121–125.PubMedCrossRefGoogle Scholar
  62. Street, D. L. (1995). Controlling extraneous variables in experimental research: A research note. Accounting Education, 4(2), 169–188.CrossRefGoogle Scholar
  63. Stroud, L. R., Foster, E., Papandonatos, G. D., Handwerger, K., Granger, D. A., Kivlighan, K. T., & Niaura, R. (2009). Stress response and the adolescent transition: Performance versus peer rejection stressors. Development and Psychopathology, 21, 47–68.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Tan, P. Z., Lee, K. H., Dahl, R. E., Nelson, E. E., Stroud, L. J., Siegle, G. J., Morgan, J. K., & Silk, J. S. (2014). Associations between maternal negative affect and adolescent’s neural response to peer evaluation. Developmental Cognitive Neuroscience, 8, 28–39.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Thoits, P. A. (2010). Stress and health: Major findings and policy implications. Journal of Health and Social Behavior, 51, S41–S53.PubMedCrossRefGoogle Scholar
  66. Whittle, S., Yücel, M., Forbes, E. E., Davey, C. G., Harding, I. H., Sheeber, L., Yap, M. B. H., & Allen, N. B. (2012). Adolescents’ depressive symptoms moderate neural responses to their mothers’ positive behavior. Social Cognitive and Affective Neuroscience, 7(1), 23–34.PubMedCrossRefGoogle Scholar
  67. Will, G. J., van Lier, P. A., Crone, E. A., & Güroğlu, B. (2016). Chronic childhood peer rejection is associated with heightened neural responses to social exclusion during adolescence. Journal of Abnormal Child Psychology, 44(1), 43–55.PubMedCrossRefGoogle Scholar
  68. Williams, K. D., & Jarvis, B. (2006). Cyberball: A program for use in research on interpersonal ostracism and acceptance. Behavior Research Methods, 38(1), 174–180.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Orianna Duncan
    • 1
    Email author
  • Emily C. Cook
    • 1
  • Donald Pimental
    • 2
  • Kristen Wilkinson
    • 1
  • Amber Champagne
    • 3
  1. 1.Department of PsychologyRhode Island CollegeProvidenceUSA
  2. 2.University of Massachusetts AmherstAmherstUSA
  3. 3.William James CollegeNewtonUSA

Personalised recommendations