Stimuli-Responsive Polysaccharide Hydrogels for Biomedical Applications: a Review

  • Iman GholamaliEmail author


This review aims to present methods for obtaining polysaccharide hydrogels, their properties and sensitivity to environmental stimuli, as well as their potential applications in biomedicine. Living systems respond to external stimuli by adapting themselves to changing conditions. Hydrogels are a class of materials with 3D networks of polymers that can absorb high amounts of water or biological fluids while remaining insoluble under physiological conditions compared with general absorbent materials, with their characteristic being dependent on network structure and the external environment. Stimuli-responsive hydrogels have the ability to respond to changes in their external environment. They can exhibit dramatic changes in their swelling behavior, network structure, permeability, and mechanical strength in response to variations in temperature, pH, glucose, electric field, light, etc. However, such changes are reversible; therefore, hydrogels can convert to their initial state as soon as the trigger is removed. Because of compatibility with living tissues, hydrogels can be used in different biomedical purposes.

Lay Summary

The application of stimuli-responsive polysaccharide hydrogels in the biomedical field has become increasingly popular with many research groups and industries. In addition to their ability to undergo large reversible transitions in their swelling behavior due to small physiological or environmental changes, they are also often highly biocompatible and versatile and possess a high storage capacity for the immobilization of biomolecules.


Hydrogels Polysaccharide Stimuli-responsive hydrogels Biomedical application 


Compliance with Ethical Standards

Conflict of Interest

The author declares that he has no conflict of interest.


  1. 1.
    Rasoulzadeh M, Namazi H. Carboxymethyl cellulose/graphene oxide bionanocomposite hydrogel beads as anticancer drug carrier agent. Carbohydr Polym. 2017;168:320–6.CrossRefGoogle Scholar
  2. 2.
    Yadollahi M, Gholamali I, Namazi H, Aghazadeh M. Synthesis and characterization of antibacterial carboxymethylcellulose/CuO bio-nanocomposite hydrogels. Int J Biol Macromol. 2015;73:109–14.CrossRefGoogle Scholar
  3. 3.
    Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2012;64:18–23.CrossRefGoogle Scholar
  4. 4.
    Wichterle O, Lim D. Hydrophilic gels for biological use. Nature. 1960;185:117–8.CrossRefGoogle Scholar
  5. 5.
    Gholamali I, Hosseini SN, Alipour E, Yadollahi M. Preparation and characterization of oxidized starch/CuO nanocomposite hydrogels applicable in a drug delivery system. Starch/Stärke. 2019;71(3-4).CrossRefGoogle Scholar
  6. 6.
    Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000;50:27–46.CrossRefGoogle Scholar
  7. 7.
    Ullah F, Othman MBH, Javed F, Ahmad Z, Akil HM. Classification, processing and application of hydrogels: a review. Mater Sci Eng C. 2015;57:414–33.CrossRefGoogle Scholar
  8. 8.
    Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E. Theoretical description of hydrogel swelling: a review. Iran Polym J. 2010;19(5):375–98.Google Scholar
  9. 9.
    Das N. Preparation methods and properties of hydrogel: a review. J Pharm Pharm Sci. 2013;5(3):112–7.Google Scholar
  10. 10.
    Malmsten M. Antimicrobial and antiviral hydrogels. Soft Matter. 2011;7:8725–36.CrossRefGoogle Scholar
  11. 11.
    Van Vlierberghe S, Dubruel P, Schacht E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules. 2011;12:1387–408.CrossRefGoogle Scholar
  12. 12.
    Richter A, Paschew G, Klatt S, Lienig J, Arndt KF, Adler HJP. Review on hydrogel-based pH sensors and microsensors. Sensors. 2008;8:561–81.CrossRefGoogle Scholar
  13. 13.
    Paulino AT, Belfiore LA, Kubota LT, Muniz EC, Tambourgi EB. Efficiency of hydrogels based on natural polysaccharides in the removal of Cd2+ ions from aqueous solutions. Chem Eng J. 2011;168:68–76.CrossRefGoogle Scholar
  14. 14.
    Bakravi A, Ahamadian Y, Hashemi H, Namazi H. Synthesis of gelatin-based biodegradable hydrogel nanocomposite and their application as drug delivery agent. Adv Polym Technol. 2018;37:2625–35.CrossRefGoogle Scholar
  15. 15.
    Venkatesan J, Lowe B, Pallela R, Kim SK. Chitosan-based polysaccharide biomaterials. Polysaccharides. 2015:1837–50.Google Scholar
  16. 16.
    Basu A, Kunduru KR, Abtew E, Domb AJ. Polysaccharide-based conjugates for biomedical applications. Bioconjug Chem. 2015;26(8):1396–412.CrossRefGoogle Scholar
  17. 17.
    Kabiri R, Namazi H. Synthesis of cellulose/reduced graphene oxide/polyaniline nanocomposite and its properties. Int J Polym Mater Polym Biomater. 2016;65:675–82.CrossRefGoogle Scholar
  18. 18.
    Ul-Islam M, Khattak WA, Ullah MW, Khan S, Park JK. Synthesis of regenerated bacterial cellulose-zinc oxide nanocomposite films for biomedical applications. Cellulose. 2014;21:433–47.CrossRefGoogle Scholar
  19. 19.
    Khan S, Ul-Islam M, Khattak WA, Ullah MW, Park JK. Bacterial cellulose-titanium dioxide nanocomposites: nanostructural characteristics, antibacterial mechanism, and biocompatibility. Cellulose. 2015;22:565–79.CrossRefGoogle Scholar
  20. 20.
    Kamel S, Ali N, Jahangir K, Shah SM, El-Gendy AA. Pharmaceutical significance of cellulose: a review. Express Polym Lett. 2008;2(11):758–78.CrossRefGoogle Scholar
  21. 21.
    Klemm D, Heublein B, Fink HP. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem. 2005;44(22):3358–93.CrossRefGoogle Scholar
  22. 22.
    Suhas, Gupta VK, Carrott PJM, Singh R, Chaudhary M, Kushwaha S. Cellulose: a review as natural, modified and activated carbon adsorbent. Bioresour Technol. 2016;126:1066–76.CrossRefGoogle Scholar
  23. 23.
    Yadollahi M, Namazi H. Synthesis and characterization of carboxymethyl cellulose/layered double hydroxide nanocomposites. J Nanopart Res. 2013;15:1563–72.CrossRefGoogle Scholar
  24. 24.
    Rakhshaei R, Namazi H. A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel. Mater Sci Eng C. 2017;73:456–64.CrossRefGoogle Scholar
  25. 25.
    Zare-Akbari Z, Farhadnejad H, Furughi-Nia B, Abedin S, Yadollahi M, Khorsand GM. pH-sensitive bionanocomposite hydrogel beads based on carboxymethyl cellulose/ZnO nanoparticle as drug carrier. Int J Biol Macromol. 2016;93:1317–27.CrossRefGoogle Scholar
  26. 26.
    Yadollahi M, Namazi H, Aghazadeh M. Antibacterial carboxymethyl cellulose/Ag nanocomposite hydrogels cross-linked with layered double hydroxides. Int J Biol Macromol. 2015;79:269–77.CrossRefGoogle Scholar
  27. 27.
    Basta AH, El-Saied H. New approach for utilization of cellulose derivatives metal complexes in preparation of durable and permanent colored papers. Carbohydr Polym. 2008;74(2):301–8.CrossRefGoogle Scholar
  28. 28.
    Shen J, Song Z, Qian X, Yang F. Carboxymethyl cellulose/alum modified precipitated calcium carbonate fillers: preparation and their use in papermaking. Carbohydr Polym. 2010;81(3):545–53.CrossRefGoogle Scholar
  29. 29.
    Choi Y, Simonsen J. Cellulose nanocrystal filled carboxymethyl cellulose nanocomposites. J Nanosci Nanotechnol. 2006;6(3):633–9.CrossRefGoogle Scholar
  30. 30.
    Luna-Martinez JF, Hernandez-Uresti DB, Reyes-Melo ME, Guerrero-Salazar CA, Gonzalez-Gonzalez VA, Sepulveda-Guzman S. Synthesis and optical characterization of ZnS-sodium carboxymethyl cellulose nanocomposite films. Carbohydr Polym. 2011;84(1):566–70.CrossRefGoogle Scholar
  31. 31.
    Foroutan R, Ahmadlouydarab M, Ramavandi B, Mohammadi R. Studying the physicochemical characteristics and metals adsorptive behavior of CMC-g-HAp/Fe3O4 nanobiocomposite. J Environ Chem Eng. 2018;6:6049–58.CrossRefGoogle Scholar
  32. 32.
    Yadollahi M, Namazi H, Barkhordari S. Preparation and properties of carboxymethyl cellulose/layered doublehydroxide bionanocomposite films. Carbohydr Polym. 2014;108:83–9.CrossRefGoogle Scholar
  33. 33.
    Yadollahi M, Gholamali I, Namazi H, Aghazadeh M. Synthesis and characterization of antibacterial carboxymethylcellulose/ZnO nanocomposite hydrogels. Int J Biol Macromol. 2015;74:136–41.CrossRefGoogle Scholar
  34. 34.
    Hebeish A, Hashem M, Abd El-Hady MM, Sharaf S. Development of CMC hydrogels loaded with silver nano-particles for medical applications. Carbohydr Polym. 2013;92:407–13.CrossRefGoogle Scholar
  35. 35.
    Ward MA, Georgiou TK. Thermoresponsive polymers for biomedical applications. Polym. 2011;3(3):1215–42.CrossRefGoogle Scholar
  36. 36.
    Jyoti BVS, Baek SW. Formulation and comparative study of rheological properties of loaded and unloaded ethanol-based gel propellants. J Energ Mater. 2015;33:125–39.CrossRefGoogle Scholar
  37. 37.
    McAllister JW, Lott JR, Schmidt PW, Sammler RL, Bates FS, Lodge TP. Linear and nonlinear rheological behavior of fibrillar methylcellulose hydrogels. ACS Macro Lett. 2015;4:538–42.CrossRefGoogle Scholar
  38. 38.
    Picheth GF, Pirich CL, Sierakowski MR, Woehl MA, Sakakibara CN, De Souza CF, et al. Bacterial cellulose in biomedical applications: a review. Int J Biol Macromol. 2017;104:97–106.CrossRefGoogle Scholar
  39. 39.
    De Oliveira SA, Da Silva BC, Riegel-Vidotti IC, Urbano A, De Sousa Faria-Tischer PC, Tischer CA. Production and characterization of bacterial cellulose membranes with hyaluronic acid from chicken comb. Int J Biol Macromol. 2017;97:642–53.CrossRefGoogle Scholar
  40. 40.
    Hayashi N, Kondo T, Ishihara M. Enzymatically produced nano-ordered short elements containing cellulose I-beta crystalline domains. Carbohydr Polym. 2005;61(2):191–7.CrossRefGoogle Scholar
  41. 41.
    Abe K, Iwamoto S, Yano H. Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules. 2007;8(10):3276–8.CrossRefGoogle Scholar
  42. 42.
    Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, et al. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules. 2007;8(6):1934–41.CrossRefGoogle Scholar
  43. 43.
    Nakagaito AN, Yano H. The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys A Mater. 2004;78(4):547–52.CrossRefGoogle Scholar
  44. 44.
    Jasim A, Ullah MW, Shi Z, Lin X, Yang G. Fabrication of bacterial cellulose/polyaniline/single-walled carbon nanotubes membrane for potential application as biosensor. Carbohydr Polym. 2017;164:214–21.CrossRefGoogle Scholar
  45. 45.
    Andrade FK, Alexandre N, Amorim I, Gartner F, Mauricio AC, Luis AL. Studies on the biocompatibility of bacterial cellulose. J Bioact Compat Polym. 2013;28:97–112.CrossRefGoogle Scholar
  46. 46.
    Avila HM, Feldmann EM, Pleumeekers MM, Nimeskern L, Kuo W, De Jong WC, et al. Novel bilayer bacterial nanocellulose scaffold supports neocartilage formation in vitro and in vivo. Biomaterials. 2015;44:122–33.CrossRefGoogle Scholar
  47. 47.
    Rajwade JM, Paknikar KM, Kumbhar JV. Applications of bacterial cellulose and its composites in biomedicine. Appl Microbiol Biotechnol. 2015;99:2491–511.CrossRefGoogle Scholar
  48. 48.
    Mishra RK, Banthia AK, Majeed ABA. Pectin based formulations for biomedical applications: a review. Asian J Pharm Clin Res. 2012;5:1–7.Google Scholar
  49. 49.
    Liu L, Fishman ML, Hicks KB. Pectin in controlled drug delivery: a review. Cellulose. 2007;14:15–24.CrossRefGoogle Scholar
  50. 50.
    Ranjha NM, Mudassir J, Sheikh ZZ. Synthesis and characterization of pH-sensitive pectin/acrylic acid hydrogels for verapamil release study. Iran Polym J. 2011;20:147–59.Google Scholar
  51. 51.
    Sudheesh Kumar PT, Lakshmanan VK, Biswas R, Nair SV, Jayakumar R. Synthesis and biological evaluation of chitin hydrogel/Nano ZnO composite bandage as antibacterial wound dressing. J Biomed Nanotechnol. 2012;8:1–10.CrossRefGoogle Scholar
  52. 52.
    Zargar V, Asghari M, Dashti A. A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. Chem Biol Eng Rev. 2015;2:1–24.Google Scholar
  53. 53.
    Kurita K. Controlled Functionalization of the polysaccharide chitin. Progress Polym Sci. 2001;26:1921–71.CrossRefGoogle Scholar
  54. 54.
    Tamura H, Nagahama H, Tokura S. Preparation of chitin hydrogel under mild conditions. Cellulose. 2006;13(4):357–64.CrossRefGoogle Scholar
  55. 55.
    Copello GJ, Mebert AM, Raineri M, Pesenti MP, Diaz LE. Removal of dyes from water using chitosan hydrogel/SiO2 and chitin hydrogel/SiO2 hybrid materials obtained by the sol-gel method. J Hazard Mater. 2011;186:932–9.CrossRefGoogle Scholar
  56. 56.
    Barikani M, Oliaei E, Seddiqi H, Honarkar H. Preparation and application of chitin and its derivatives: a review. Iran Polym J. 2014;23:307–26.CrossRefGoogle Scholar
  57. 57.
    Sharp RG. A review of the applications of chitin and its derivatives in agriculture to modify plant-microbial interactions and improve crop yields. Agronomy. 2013;3(4):757–93.CrossRefGoogle Scholar
  58. 58.
    Anitha A, Sowmya S, Sudheesh Kumar PT, Deepthi S, Chennazhi KP, Ehrlich H, et al. Chitin and chitosan in selected biomedical applications. Prog Polym Sci. 2014;39:1644–67.CrossRefGoogle Scholar
  59. 59.
    Javanbakht S, Namazi H. Doxorubicin loaded carboxymethyl cellulose/graphene quantum dot nanocomposite hydrogel films as a potential anticancer drug delivery system. Mater Sci Eng C. 2018;87(1):50–9.CrossRefGoogle Scholar
  60. 60.
    Farhoudian S, Yadollahi M, Namazi H. Facile synthesis of antibacterial chitosan/CuO bio-nanocomposite hydrogel beads. Int J Biol Macromol. 2016;82:837–43.CrossRefGoogle Scholar
  61. 61.
    Rasoulzadehzali M, Namazi H. Facile preparation of antibacterial chitosan/graphene oxide-Ag bio-nanocomposite hydrogel beads for controlled release of doxorubicin. Int J Biol Macromol. 2018;116:54–63.CrossRefGoogle Scholar
  62. 62.
    Gholamali I, Asnaashariisfahani M, Alipour E. Silver nanoparticles incorporated in pH-sensitive nanocomposite hydrogels based on carboxymethyl chitosan-poly (vinyl alcohol) for use in a drug delivery system. Regen Eng Transl Med. 2019:1–16.Google Scholar
  63. 63.
    Panchal V, Vyas B, Chauhan CS, Goyal PK, Sarangdevot YS. Chitosan as a natural polymer: an overview. 2015;5(2):1-8.
  64. 64.
    Wu J, Hou S, Ren D, Mather PT. Antimicrobial properties of nanostructured hydrogel webs containing silver. Biomacromolecules. 2009;10:2686–93.CrossRefGoogle Scholar
  65. 65.
    Yadollahi M, Farhoudian S, Namazi H. One-pot synthesis of antibacterial chitosan/silver bio-nanocomposite hydrogel beads as drug delivery systems. Int J Biol Macromol. 2015;79:37–43.CrossRefGoogle Scholar
  66. 66.
    Yadollahi M, Farhoudian S, Barkhordari S, Gholamali I, Farhadnejad H, Motasadizadeh H. Facile synthesis of chitosan/ZnO bio-nanocomposite hydrogel beads as drug delivery systems. Int J Biol Macromol. 2016;82:273–8.CrossRefGoogle Scholar
  67. 67.
    George M, Abraham TE. pH sensitive alginate-guar gum hydrogel for the controlled delivery of protein drugs. Int J Pharm. 2007;335:123–9.CrossRefGoogle Scholar
  68. 68.
    Bouropoulos N, Stampolakis A, Mouzakis DE. Dynamic mechanical properties of calcium alginate-hydroxyapatite nanocomposite hydrogels. Sci Adv Mater. 2010;2:239–42.CrossRefGoogle Scholar
  69. 69.
    Mohamed SF, Mahmoud GA, Abou Taleb MF. Synthesis and characterization of poly (acrylic acid)-g-sodium alginate hydrogel initiated by gamma irradiation for controlled release of chlortetracycline HCl. Monatsh Chem. 2013;144(2):129–37.CrossRefGoogle Scholar
  70. 70.
    Mørch YA, Donati I, Strand BL, Bræk GS. Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules. 2006;7:1471–80.CrossRefGoogle Scholar
  71. 71.
    Paques JP, van der Linden E, van Rijn CJM, Sagis LMC. Preparation methods of alginate nanoparticles. Adv Colloid Interface. 2014;209:163–71.CrossRefGoogle Scholar
  72. 72.
    Venkatesan J, Bhatnagar I, Manivasagan P, Kang KH, Kim SK. Alginate composites for bone tissue engineering: a review. Int J Biol Macromol. 2015;72:269–81.CrossRefGoogle Scholar
  73. 73.
    Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012;37:106–26.CrossRefGoogle Scholar
  74. 74.
    Pawar SN, Edgar KJ. Alginate derivatization: a review of chemistry, properties and applications. Biomaterials. 2012;33:3279–305.CrossRefGoogle Scholar
  75. 75.
    Aljohani WJ, Wenchao L, Ullah MW, Zhang X, Yang G. Application of sodium alginate hydrogel. J Biotechn Biochem. 2017;3(3):19–31.Google Scholar
  76. 76.
    Collins MN, Birkinshaw C. Hyaluronic acid based scaffolds for tissue engineering—a review. Carbohydr Polym. 2013;92:1262–79.CrossRefGoogle Scholar
  77. 77.
    Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Adv Mater. 2011;23:H41–56.CrossRefGoogle Scholar
  78. 78.
    Zohuriaan-Mehr MJ, Kabiri K. Superabsorbent polymer materials: a review. Iran Polym J. 2008;17(6):451–77.Google Scholar
  79. 79.
    Del Valle LJ, Díaz A, Puiggalí J. Hydrogels for biomedical applications: cellulose, chitosan, and protein/peptide derivatives. Gels. 2017;3:27–55.CrossRefGoogle Scholar
  80. 80.
    Haraguchi K. Stimuli-responsive nanocomposite gels. Colloid Polym Sci. 2011;289:455–73.CrossRefGoogle Scholar
  81. 81.
    Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev. 2012;64:49–60.CrossRefGoogle Scholar
  82. 82.
    Gupta AK, Siddiqui AW. Environmental responsive hydrogels: a novel approach in drug delivery system. J Drug Deliv Ther. 2012;2(1):81–8.Google Scholar
  83. 83.
    Kashyap N, Kumar N, Kumar MR. Hydrogels for pharmaceutical and biomedical applications. Crit Rev Ther Drug. 2005;22:107–50.CrossRefGoogle Scholar
  84. 84.
    Qureshi D, Nayak SK, Maji S, Anis A, Kim D, Pal K. Environment sensitive hydrogels for drug delivery applications. Eur Polym J. 2019.Google Scholar
  85. 85.
    Pa’e N, Salehudin MH, Diana Hassan N, Mohd Marsin A, Idayu Muhamad I. Thermal behavior of bacterial cellulose based hydrogels with other composites and related instrumental analysis. Cellulose-Based Superabsorbent Hydrogels PP. 2018; pp. 1-25.Google Scholar
  86. 86.
    Wei W, Hu X, Qi X, Yu H, Liu Y, Li J, et al. A novel thermo-responsive hydrogel based on salecan and poly (N-isopropylacrylamide): synthesis and characterization. Colloid Surface B. 2015;125:1–11.CrossRefGoogle Scholar
  87. 87.
    Tan H, Ramirez CM, Miljkovic N, Li H, Rubin JP, Marra KG. Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering. Biomaterials. 2009;30:6844–53.CrossRefGoogle Scholar
  88. 88.
    Ha DI, Lee SB, Chong MS, Lee YM, Kim SY, Park YH. Preparation of thermoresponsive and injectable hydrogels based on hyaluronic acid and poly-(N-isopropylacrylamide) and their drug release behaviors. Macromol Res. 2006;14:87–93.CrossRefGoogle Scholar
  89. 89.
    Ganji F, Abdekhodaie MJ. Chitosan-g-PLGA copolymer as a thermosensitive membrane. Carbohydr Polym. 2010;80:740–6.CrossRefGoogle Scholar
  90. 90.
    Taylor MJ, Tomlins P, Sahota TS. Thermoresponsive gels. Gels. 2017;3:1–31.CrossRefGoogle Scholar
  91. 91.
    Bai Y, Zhang Z, Zhang A, Chen L, He C, Zhuang X, et al. Novel thermo- and pH-responsive hydroxypropyl cellulose- and poly (L-glutamic acid)-based microgels for oral insulin controlled release. Carbohydr Polym. 2012;89:1207–14.CrossRefGoogle Scholar
  92. 92.
    Thirumala S, Gimble JM, Devireddy RV. Methylcellulose based thermally reversible hydrogel system for tissue engineering applications. Cells. 2013;3:460–75.CrossRefGoogle Scholar
  93. 93.
    Cochis A, Grad S, Stoddart MJ, Fare S, Altomare L, Azzimonti B, et al. Bioreactor mechanically guided 3D mesenchymal stem cell chondrogenesis using a biocompatible novel thermo-reversible methylcellulose-based hydrogel. Sci Rep. 2017;7:1–12.CrossRefGoogle Scholar
  94. 94.
    Bawa P, Pillay V, Choonara YE, du Toit LC. Stimuli-responsive polymers and their applications in drug delivery. Biomed Mater. 2009;4:1–15.CrossRefGoogle Scholar
  95. 95.
    Cirillo G, Spataro T, Curcio M, Spizzirri UG, Nicoletta FP, Picci N, et al. Tunable thermo-responsive hydrogels: synthesis, structural analysis and drug release studies. Mater Sci Eng C. 2015;48:499–510.CrossRefGoogle Scholar
  96. 96.
    Zhang K, Wu XY. Temperature and pH-responsive polymeric composite membranes for controlled delivery of proteins and peptides. Biomaterials. 2004;25:5281–91.CrossRefGoogle Scholar
  97. 97.
    Yamato M, Utsumi M, Kushida A, Konno C, Kikuchi A, Okano T. Thermo-responsive culture dishes allow the intact harvest of multilayered keratinocyte sheets without dispase by reducing temperature. Tissue Eng. 2004;7:473–80.CrossRefGoogle Scholar
  98. 98.
    Cirillo G, Nicoletta FP, Curcio M, Spizzirri UG, Picci N, Iemma F. Enzyme immobilization on smart polymers: catalysis on demand. React Funct Polym. 2014;83:62–9.CrossRefGoogle Scholar
  99. 99.
    Dwivedi S, Khatri P, Mehra GR, Kumar V. Hydrogel—a conceptual overview. Int J Pharm Biol Arch. 2011;2(6):1588–97.Google Scholar
  100. 100.
    Gupta P, Vermani K, Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today. 2002;7:569–79.CrossRefGoogle Scholar
  101. 101.
    Wang T, Turhan M, Gunasekaran S. Selected properties of pH-sensitive, biodegradable chitosan-poly (vinyl alcohol) hydrogel. Polym Int. 2004;53:911–8.CrossRefGoogle Scholar
  102. 102.
    Javanbakht S, Nazari N, Rakhshaei R, Namazi H. Cu-crosslinked carboxymethylcellulose/naproxen/graphene quantum dot nanocomposite hydrogel beads for naproxen oral delivery. Carbohydr Polym. 2018;195(1):453–9.CrossRefGoogle Scholar
  103. 103.
    Zakhireh S, Mahkam M, Yadollahi M, Jafarirad S. Investigation of pH-sensitive galactopyranoside glycol hydrogels as effective vehicles for oral drug delivery. J Polym Res. 2014;21:398–403.CrossRefGoogle Scholar
  104. 104.
    Barkhordari S, Yadollahi M, Namazi H. pH sensitive nanocomposite hydrogel beads based on carboxymethyl cellulose/layered double hydroxide as drug delivery systems. J Polym Res. 2014;21:454–62.CrossRefGoogle Scholar
  105. 105.
    Yang J, Chen J, Pan D, Wan Y, Wang Z. pH-sensitive interpenetrating network hydrogels based on chitosan derivatives and alginate for oral drug delivery. Carbohydr Polym. 2013;92:719–25.CrossRefGoogle Scholar
  106. 106.
    Liu J, Huang Y, Kumar A, Tan A, Jin S, Mozhi A, et al. pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol Adv. 2014;32(4):693–710.CrossRefGoogle Scholar
  107. 107.
    Dargaville TR, Farrugia BL, Broadbent JA, Pace S, Upton Z, Voelcker NH. Sensors and imaging for wound healing: a review. Biosens Bioelectron. 2013;41:30–42.CrossRefGoogle Scholar
  108. 108.
    Zhang Y, Liu Z, Swaddiwudhipong S, Miao H, Ding Z, Yang Z. pH-sensitive hydrogel for micro-fluidic valve. J Funct Biomater. 2012;3:464–79.CrossRefGoogle Scholar
  109. 109.
    Li X, Fu M, Wu M, Zhang C, Deng X, Dhinakar A, et al. pH-sensitive peptide hydrogel for glucose-responsive insulin delivery. Acta Biomater. 2017;51:294–303.CrossRefGoogle Scholar
  110. 110.
    Guiseppi-Elie A, Brahim SI, Narinesingh D. A chemically synthesized artificial pancreas: release of insulin from glucose-responsive hydrogels. Adv Mater. 2002;14:743–6.CrossRefGoogle Scholar
  111. 111.
    Roy D, Cambre JN, Sumerlin BS. Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci. 2010;35:278–301.CrossRefGoogle Scholar
  112. 112.
    Egawa Y, Seki T, Takahashi S, Anzai J. Electrochemical and optical sugar sensors based on phenylboronic acid and its derivatives. Mater Sci Eng C. 2011;31:1257–64.CrossRefGoogle Scholar
  113. 113.
    Albin G, Horbett TA, Ratner BD. Glucose sensitive membranes for controlled delivery of insulin: insulin transport studies. J Control Release. 1985;2:153–64.CrossRefGoogle Scholar
  114. 114.
    Marek SR, Peppas NA. Insulin release dynamics from poly (diethylaminoethyl methacrylate) hydrogel systems. AIChE J. 2013;59:3578–85.CrossRefGoogle Scholar
  115. 115.
    Wong JH, Ng TB. Isolation and characterization of a glucose/mannose/rhamnose-specific lectin from the knife bean Canavalia gladiate. Arch Biochem Biophys. 2005;439:91–8.CrossRefGoogle Scholar
  116. 116.
    Ravaine V, Ancla C, Catargi B. Chemically controlled closed-loop insulin delivery. J Control Release. 2008;132:2–11.CrossRefGoogle Scholar
  117. 117.
    Valuev IL, Vanchugova LV, Valuev LI. Glucose-sensitive hydrogel systems. Polym Sci Ser A. 2011;53(5):385–9.CrossRefGoogle Scholar
  118. 118.
    Obaidat AA, Park K. Characterization of glucose dependent gel-sol phase transition of the polymeric glucose-concanavalin A hydrogel system. Pharm Res. 1996;13(7):989–95.CrossRefGoogle Scholar
  119. 119.
    Yin R, Wang K, Han J, Nie J. Photo-crosslinked glucose-sensitive hydrogels based on methacrylate modified dextran-concanavalin A and PEG dimethacrylate. Carbohydr Polym. 2010;82(2):412–8.CrossRefGoogle Scholar
  120. 120.
    Aslan K, Lakowicz JR, Geddes CD. Tunable plasmonic glucose sensing based on the dissociation of Con A-aggregated dextran-coated gold colloids. Anal Chim Acta. 2004;517:139–44.CrossRefGoogle Scholar
  121. 121.
    Zhang C, Losego MD, Braun PV. Hydrogel-based glucose sensors: effects of phenylboronic acid chemical structure on response. Chem Mater. 2013;25(15):3239–50.CrossRefGoogle Scholar
  122. 122.
    Hisamitsu I, Kataoka K, Okano T, Sakurai Y. Glucose-responsive gel from phenylborate polymer and poly (vinyl alcohol): prompt response at physiological pH through the interaction of borate with amino group in the gel. Pharm Res. 1997;14(3):289–93.CrossRefGoogle Scholar
  123. 123.
    Kim A, Mujumdar SK, Siegel RA. Swelling properties of hydrogels containing phenylboronic acids. Chemosensor. 2014;2:1–12.CrossRefGoogle Scholar
  124. 124.
    Nilsen-Nygaard J, Strand SP, Varum KM, Draget KI, Nordgard CT. Chitosan: gels and interfacial properties. Polym. 2015;7:552–79.CrossRefGoogle Scholar
  125. 125.
    Zhang H, Wu S, Tao Y, Zhang L, Su Z. Preparation and characterization of water-soluble chitosan nanoparticles as protein delivery system. J Nanomater. 2011;2010:1–6.Google Scholar
  126. 126.
    Webber MJ, Anderson DG. Smart approaches to glucose-responsive drug delivery. J Drug Target. 2015;23(7-8):651–5.CrossRefGoogle Scholar
  127. 127.
    Willner I. Stimuli-controlled hydrogels and their applications. Acc Chem Res. 2017;50:657–8.CrossRefGoogle Scholar
  128. 128.
    Abureesh MA, Oladipo AA, Gazi M. Facile synthesis of glucose-sensitive chitosan-poly (vinyl alcohol) hydrogel: drug release optimization and swelling properties. Int J Biol Macromol. 2016;90:75–80.CrossRefGoogle Scholar
  129. 129.
    Jeong B, Gutowska A. Lessons from nature: stimuli-responsive polymers and their biomedical applications. Trends Biotechnol. 2002;20:305–11.CrossRefGoogle Scholar
  130. 130.
    Attaran A, Brummund J, Wallmersperger T. Modeling and simulation of the bending behavior of electrically-stimulated cantilevered hydrogels. Smart Mater Struct. 2015;24(3):1–15.CrossRefGoogle Scholar
  131. 131.
    Shi Z, Gao X, Ullah MW, Li S, Wang Q, Yang G. Electroconductive natural polymer-based hydrogels. Carbohydr Polym. 2017;163:62–9.CrossRefGoogle Scholar
  132. 132.
    Li H, Luo R, Lam KY. Modeling of ionic transport in electric-stimulus-responsive hydrogels. J Membr Sci. 2007;289:284–96.CrossRefGoogle Scholar
  133. 133.
    Wallmersperger T, Attaran A, Keller K, Brummund J, Guenther M, Gerlach G. Modeling and simulation of hydrogels for the application as bending actuators. Progr Colloid Polym Sci. 2013;140:189–204.Google Scholar
  134. 134.
    Yuan Z, Li H. Modeling development and numerical simulation of transient nonlinear behaviors of electric-sensitive hydrogel membrane under an external electric field. J Biochip Tissue Chip. 2013;3:1–13.CrossRefGoogle Scholar
  135. 135.
    Rahimi N, Dera R, Van den Akker NMS, Gagliardi M, Swennen G, Diliën H, Cleij, T, Post MJ, Molin DGM. Electro-responsive hydrogels for biomedical applications. 2015.
  136. 136.
    Bajpai AK, Shukla SK, Bhanu S, Kankane S. Responsive polymers in controlled drug delivery. Prog Polym Sci. 2008;33:1088–118.CrossRefGoogle Scholar
  137. 137.
    Murdan S. Electro-responsive drug delivery from hydrogels. J Control Release. 2003;92:1–17.CrossRefGoogle Scholar
  138. 138.
    Liu Y, Yan K, Jiang G, Xiong Y, Du Y, Shi X. Electrical signal guided ibuprofen release from electrodeposited chitosan hydrogel. Int J Polym Sci. 2014;2014:1–8.Google Scholar
  139. 139.
    Peng L, Liu Y, Huang J, Li J, Gong J, Ma J. Microfluidic fabrication of highly stretchable and fast electro-responsive graphene oxide/polyacrylamide/alginate hydrogel fibers. Eur Polym J. 2018;103:335–41.CrossRefGoogle Scholar
  140. 140.
    Liu Y, Servant A, Guy OJ, Al-Jamal KT, Williams PR, Hawkins KM, et al. An electric-field responsive microsystem for controllable miniaturised drug delivery applications. Procedia Eng. 2011;25:984–7.CrossRefGoogle Scholar
  141. 141.
    Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev. 2008;60(15):1638–49.CrossRefGoogle Scholar
  142. 142.
    Takahashi SH, Lira LM. Córdoba de Torresi SI. Zero-order release profiles from a multistimuli responsive electro-conductive hydrogel. J Biomater Nanobi. 2012;3:262–8.CrossRefGoogle Scholar
  143. 143.
    Tiitu M, Hiekkataipale P, Kainen JH, Makela T, Ikkala O. Viscoelastic and electrical transitions in gelation of electrically conducting polyaniline. Macromolecules. 2002;35:5212–7.CrossRefGoogle Scholar
  144. 144.
    Qin XH, Ovsianikov A, Stampfl J, Liska R. Additive manufacturing of photosensitive hydrogels for tissue engineering applications. BioNanoMat. 2014;15(3-4):49–70.CrossRefGoogle Scholar
  145. 145.
    Katz JS, Burdick JA. Light-responsive biomaterials: development and applications. Macromol Biosci. 2010;10:339–48.CrossRefGoogle Scholar
  146. 146.
    Ilić-Stojanović S, Nikolić L, Nikolić V, Petrović S, Stanković M, Mladenović-Ranisavljević I. Stimuli-sensitive hydrogels for pharmaceutical and medical applications. Facta universitatis-series: Phys Chem Technol. 2011;9(1):37–56.Google Scholar
  147. 147.
    Suzuki A, Tanaka T. Phase transition in polymer gels induced by visible light. Nature. 1990;346:345–7.CrossRefGoogle Scholar
  148. 148.
    Schiphorst J, Coleman S, Stumpel JE, Azouz AB, Diamond D, Schenning APHJ. Molecular design of light-responsive hydrogels, for in situ generation of fast and reversible valves for microfluidic applications. Chem Mater. 2015;27:5925–31.CrossRefGoogle Scholar
  149. 149.
    Meng H, Hu J. A brief review of stimulus active polymers responsive to thermal, light, magnetic, electric and water/solvent stimuli. J Intell Mater Syst Struct. 2010;21:859–85.CrossRefGoogle Scholar
  150. 150.
    Javvaji V, Baradwaj AG, Payne GF, Raghavan SR. Light-activated ionic gelation of common biopolymers. Langmuir. 2011;27:12591–6.CrossRefGoogle Scholar
  151. 151.
    Higham AK, Bonino CA, Raghavan SR, Khan SA. Photo-activated ionic gelation of alginate hydrogel: real-time rheological monitoring of the two-step crosslinking mechanism. Soft Matter. 2014;10:4990–5002.CrossRefGoogle Scholar
  152. 152.
    Lin MC, Tai HY, Ou TC, Don TM. Preparation and characterization of UV-sensitive chitosan for UV-cure with poly (ethylene glycol) dimethacrylate. Cellulose. 2012;19:1689–700.CrossRefGoogle Scholar
  153. 153.
    Monier M, Abdel-Latif DA, Ji HF. Synthesis and application of photo active carboxymethyl cellulose derivatives. React Funct Polym. 2016;102:137–46.CrossRefGoogle Scholar
  154. 154.
    Cohen Stuart MA, Huck WTS, Genzer J, Müller M, Ober C, Stamm M, et al. Emerging applications of stimuli-responsive polymer materials nature materials. Nat Mater. 2010;9:101–13.CrossRefGoogle Scholar
  155. 155.
    Lee KK, Cussler E, Marchetti M, McHugh MA. Pressure-dependent phase transitions in hydrogels. Chem Eng Sci. 1990;45(3):766–7.CrossRefGoogle Scholar
  156. 156.
    Mahkam M. Modification of nano alginate-chitosan matrix for oral delivery of insulin. Nat Sci. 2009;7(8):1–7.Google Scholar
  157. 157.
    Peppas NA, Khare AR. Preparation, structure and diffusional behavior of hydrogel in controlled release. Adv Drug Deliv Rev. 1993;11:1–35.CrossRefGoogle Scholar
  158. 158.
    Ferreira NN, Ferreira LMB, Cardoso VMO, Boni FI, Souza ALR, Gremião MPD. Recent advances in smart hydrogels for biomedical applications: from self-assembly to functional approaches. Eur Polym J. 2018;99:117–33.CrossRefGoogle Scholar
  159. 159.
    Wang W, Kang Y, Wang A. One-step fabrication in aqueous solution of a granular alginate-based hydrogel for fast and efficient removal of heavy metal ions. J Polym Res. 2013;20:101–10.CrossRefGoogle Scholar
  160. 160.
    Fernandez-Ferreiro A, Gonzalez Barcia M, Gil-Martinez M, Vieites-Prado A, Lema I, Argibay B, et al. In vitro and in vivo ocular safety and eye surface permanence determination by direct and magnetic resonance imaging of ion-sensitive hydrogels based on gellan gum and kappa-carrageenan. Eur J Pharm Biopharm. 2015;94:342–51.CrossRefGoogle Scholar
  161. 161.
    Gambhire S, Bhalerao K, Singh S. In situ hydrogel: different approaches to ocular drug delivery. Int J Pharm Pharm Sci. 2013;5(2):27–36.Google Scholar
  162. 162.
    Park TG, Hoffman AS. Sodium chloride-induced phase transition in nonionic poly (N-isopropylacrylamide) gel. Macromolecules. 1993;26:5045–8.CrossRefGoogle Scholar
  163. 163.
    Gawel K, Barriet D, Sletmoen M, Stokke BT. Responsive hydrogels for label-free signal transduction within biosensors. Sensors. 2010;10:4381–409.CrossRefGoogle Scholar
  164. 164.
    Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm. 2004;57:19–34.CrossRefGoogle Scholar
  165. 165.
    Mao J, Kondu S, Ji HF, McShane MJ. Study of the near-neutral pH-sensitivity of chitosan/gelatin hydrogels by turbidimetry and microcantilever deflection. Biotechnol Bioeng. 2006;95(3):333–41.CrossRefGoogle Scholar
  166. 166.
    Beaune G, Ménager C. In situ precipitation of magnetic fluid encapsulated in giant liposomes. J Colloid Interface Sci. 2010;343(1):396–9.CrossRefGoogle Scholar
  167. 167.
    Li Y, Huang G, Zhang X, Li B, Chen Y, Lu T, et al. Magnetic hydrogels and their potential biomedical applications. Adv Funct Mater. 2012;23(6):660–72.CrossRefGoogle Scholar
  168. 168.
    Gil S, Mano JF. Magnetic composite biomaterials for tissue engineering. Biomater Sci. 2014;2:812–8.CrossRefGoogle Scholar
  169. 169.
    Medeiros SF, Santos AM, Fessi H, Elaissari A. Stimuli-responsive magnetic particles for biomedical applications. Int J Pharm. 2011;403:139–61.CrossRefGoogle Scholar
  170. 170.
    Davaran S, Alimirzalu S, Nejati-Koshki K, Tayefi Nasrabadi H, Akbarzadeh A, Khandaghi AA, et al. Physicochemical characteristics of Fe3O4 magnetic nanocomposites based on poly (N isopropylacrylamide) for anti-cancer drug delivery. Asian Pac J Cancer P. 2014;15(1):49–54.CrossRefGoogle Scholar
  171. 171.
    Sriplai N, Mongkolthanaruk W, Eichhorn SJ, Pinitsoontorn S. Magnetically responsive and flexible bacterial cellulose membranes. Carbohydr Polym. 2018;192:251–62.CrossRefGoogle Scholar
  172. 172.
    El-Sherbiny IM, Yacoub MH. Hydrogel scaffolds for tissue engineering: progress and challenges. J Nanomater. 2011;2011:1–13.CrossRefGoogle Scholar
  173. 173.
    Gaharwar AK, Peppas NA, Khademhosseini A. Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng. 2014;111(3):441–53.CrossRefGoogle Scholar
  174. 174.
    Chatterjee J, Haik Y, Ching JC. Modification and characterization of polystyrene-based magnetic microspheres and comparison with albumin-based magnetic microspheres. J Magn Magn Mater. 2001;225(1-2):21–9.CrossRefGoogle Scholar
  175. 175.
    Reddi AH, Becerra J, Andrades JA. Nanomaterials and hydrogel scaffolds for articular cartilage regeneration. Tissue Eng B Rev. 2011;17(5):301–5.CrossRefGoogle Scholar
  176. 176.
    Jun HW, Yuwono V, Paramonov SE, Hartgerink JD. Enzyme-mediated degradation of peptide amphilic nanofiber networks. Adv Mater. 2005;17:2612–7.CrossRefGoogle Scholar
  177. 177.
    Horsman MR, Overgaard J. Hyperthermia: a potent enhancer of radiotherapy. Clin Oncol. 2007;19(6):418–26.CrossRefGoogle Scholar
  178. 178.
    Liu TY, Hu SH, Liu DM, Chen SY, Chen IW. Biomedical nanoparticle carriers with combined thermal and magnetic responses. Nano Today. 2009;4:52–65.CrossRefGoogle Scholar
  179. 179.
    Wu J, Jiang W, Tian R, Shen Y, Jiang W. Facile synthesis of magnetic-/pH-responsive hydrogel beads based on Fe3O4 nanoparticles and chitosan hydrogel as MTX carriers for controlled drug release. J Biomater Sci Polym E. 2016;27(15):1553–68.CrossRefGoogle Scholar
  180. 180.
    Zhao YZ, Du LN, Lu CT, Jin YG, Ge SP. Potential and problems in ultrasound-responsive drug delivery systems. Int J Nanomedicine. 2013;8:1621–33.Google Scholar
  181. 181.
    Norris P, Noble M, Francolini I, Vinogradov A, Stewart P, Ratner B, et al. Ultrasonically controlled release of ciprofloxacin from self-assembled coatings on poly (2-Hydroxyethyl methacrylate) hydrogels for Pseudomonas aeruginosa biofilm prevention. Agents Chemother. 2005;49(10):4272–9.CrossRefGoogle Scholar
  182. 182.
    Uesugi Y, Kawata H, Saito Y, Tabata Y. An ultrasound-responsive nano delivery system of tissue-type plasminogen activator for thrombolytic therapy. J Control Release. 2010;147(2):269–77.CrossRefGoogle Scholar
  183. 183.
    You JO, Almeda D, Ye JCG, Auguste DT. Bioresponsive matrices in drug delivery. J Biol Eng. 2010;4:15–27.CrossRefGoogle Scholar
  184. 184.
    Peteu SF, Oancea F, Sicuia OA, Constantinescu F, Dinu S. Responsive polymers for crop protection. Polymers. 2010;2:229–51.CrossRefGoogle Scholar
  185. 185.
    Zardad AZ, Choonara YE, Claire du Toit L, Kumar P, Mabrouk M, Kondiah PPD, et al. A review of thermo- and ultrasound-responsive polymeric systems for delivery of chemotherapeutic agents. Polym. 2016;8(10):359.CrossRefGoogle Scholar
  186. 186.
    Wu CH, Sun MK, Shieh J, Chen CH, Huang CW, Dai CA, et al. Ultrasound-responsive NIPAM-based hydrogels with tunable profile of controlled release of large molecules. Ultrasonics. 2018;83:157–63.CrossRefGoogle Scholar
  187. 187.
    Audebrand M, Kolb M, Axelos MAV. Combined rheological and ultrasonic study of alginate and pectin gels near the sol-gel transition. Biomacromolecules. 2006;7:2811–7.CrossRefGoogle Scholar
  188. 188.
    Jiang H, Kobayashi T. Ultrasound stimulated release of gallic acid from chitin hydrogel matrix. Mater Sci Eng C. 2017;75:478–86.CrossRefGoogle Scholar
  189. 189.
    Lu ZR, Kopeckova P, Kopecek J. Antigen responsive hydrogels based on polymerizable antibody Fab' fragment. Macromol Biosci. 2003;3(6):296–300.CrossRefGoogle Scholar
  190. 190.
    Souza SF, Kogikoski S Jr, Silva ER, Alves WA. Nanostructured antigen responsive hydrogels based on peptides for leishmaniasis detection. J Braz Chem Soc. 2017;28(9):1619–29.Google Scholar
  191. 191.
    Zhang R, Bowyer A, Eisenthal R, Hubble J. A smart membrane based on an antigen-responsive hydrogel. Biotechnol Bioeng. 2007;97(4):976–84.CrossRefGoogle Scholar
  192. 192.
    Borges O, Borchard G, Verhoef JC, De Sousa A, Junginger HE. Preparation of coated nanoparticles for a new mucosal vaccine delivery system. Int J Pharm. 2005;299:155–66.CrossRefGoogle Scholar
  193. 193.
    Li XY, Kong XY, Shi S, Zheng XL, Guo G, Wei YQ, et al. Preparation of alginate coated chitosan microparticles for vaccine delivery. BMC Biotechnol. 2008;8:89.CrossRefGoogle Scholar
  194. 194.
    Thornton PD, McConnel G, Ulijin RV. Enzyme-responsive polymer hydrogel beads. Chem Commun. 2005;47:5913–5.CrossRefGoogle Scholar
  195. 195.
    Jhaveri A, Deshpande P, Torchilin V. Stimuli-sensitive nanopreparations for combination cancer therapy. J Control Release. 2014;190:352–70.CrossRefGoogle Scholar
  196. 196.
    Lu Y, Sun W, Gu Z. Stimuli-responsive nanomaterials for therapeutic protein delivery. J Control Release. 2014;194:1–19.CrossRefGoogle Scholar
  197. 197.
    Ulijin RV. Enzyme-responsive materials: a new class of smart biomaterials. J Mater Chem. 2006;16:2217–25.CrossRefGoogle Scholar
  198. 198.
    Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12:991–1003.CrossRefGoogle Scholar
  199. 199.
    Aimetti AA, Machen AJ, Anseth KS. Poly (ethylene glycol) hydrogels formed by thiol-ene photopolymerization for enzyme-responsive protein delivery. Biomaterials. 2009;30(30):6048–54.CrossRefGoogle Scholar
  200. 200.
    Lee SC, Kwon IK, Park K. Hydrogels for delivery of bioactive agents: a historical perspective. Adv Drug Deliv Rev. 2013;65:17–20.CrossRefGoogle Scholar
  201. 201.
    Sadat Ebrahimi MM, Schonherr H. Enzyme-sensing chitosan hydrogels. Langmuir. 2014;30:7842–50.CrossRefGoogle Scholar
  202. 202.
    Wang C, Esker AR. Nanocrystalline chitin thin films. Carbohydr Polym. 2014;102:151–8.CrossRefGoogle Scholar
  203. 203.
    Kaur H, Kumar R, Nagendra Babu J, Mittal S. Advances in arsenic biosensor development—a comprehensive review. Biosens Bioelectron. 2015;63:533–45.CrossRefGoogle Scholar
  204. 204.
    Saha N, Saarai A, Roy N, Kitano T, Saha P. Polymeric biomaterial based hydrogels for biomedical applications. J Biomater Nanobiotechnol. 2011;2:85–90.CrossRefGoogle Scholar
  205. 205.
    Guo B, Glavas L, Albertsson AC. Biodegradable and electrically conducting polymers for biomedical applications. Prog Polym Sci. 2013;38(9):1263–86.CrossRefGoogle Scholar
  206. 206.
    Zaman M, Siddique W, Waheed S, Sarfraz RM, Mahmood A, Qureshi J, et al. Hydrogels, their applications and polymers used for hydrogels: a review. IJBPAS. 2015;4(12):6581–603.Google Scholar
  207. 207.
    Di Z, Shi Z, Ullah MW, Li S, Yang G. A transparent wound dressing based on bacterial cellulose whisker and poly (2-hydroxyethyl methacrylate). Int J Biol Macromol. 2017;105:638–44.CrossRefGoogle Scholar
  208. 208.
    Singh B, Sharma S, Dhiman A. Acacia gum polysaccharide based hydrogel wound dressings: synthesis, characterization, drug delivery and biomedical properties. Carbohydr Polym. 2017;165:294–303.CrossRefGoogle Scholar
  209. 209.
    Chai Q, Jiao Y, Yu X. Hydrogels for biomedical applications: their characteristics and the mechanisms behind them. Gels. 2017;3(1):6.CrossRefGoogle Scholar
  210. 210.
    Barkhordari S, Yadollahi M. Carboxymethyl cellulose capsulated layered double hydroxides/drug nanohybrids for cephalexin oral delivery. Appl Clay Sci. 2016;121-122:77–85.CrossRefGoogle Scholar
  211. 211.
    Hoare TR, Kohane DS. Hydrogels in drug delivery: progress and challenges. Polymer. 2008;49:1993–2007.CrossRefGoogle Scholar
  212. 212.
    Masteiková R, Chalupová Z, Šklubalová Z. Stimuli-sensitive hydrogels in controlled and sustained drug delivery. Medicina. 2003;39:19–24.Google Scholar
  213. 213.
    He C, Kim SW, Lee DS. In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J Control Release. 2008;127:189–207.CrossRefGoogle Scholar
  214. 214.
    Kuhn W, Hargitay B, Katchalsky A, Eisenberg H. Reversible dilation and contraction by changing the state of ionization of high-polymer acid networks. Nature. 1950;165:514–6.CrossRefGoogle Scholar
  215. 215.
    Aranaz I, Mengíbar M, Harris R, Paños I, Miralles B, Acosta N, et al. Functional characterization of chitin and chitosan. Curr Chem Biol. 2009;3:203–30.Google Scholar
  216. 216.
    Kumar A, Han SS. PVA-based hydrogels for tissue engineering: a review. Int J Polym Mater Polym Biomater. 2017;66(4):159–82.CrossRefGoogle Scholar
  217. 217.
    Shi J, Votruba AR, Farokhzad OC, Langer R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett. 2010;10:3223–30.CrossRefGoogle Scholar
  218. 218.
    Asadi N, Alizadeh E, Salehi R, Khalandi B, Davaran S, Akbarzadeh A. Nanocomposite hydrogels for cartilage tissue engineering: a review. Artif Cell Nanomed Biotechnol. 2018;46(3):465–71.CrossRefGoogle Scholar
  219. 219.
    Sun J, Tan H. Alginate-based biomaterials for regenerative medicine applications. Materials. 2013;6:1285–309.CrossRefGoogle Scholar
  220. 220.
    Gauvin R, Parenteau-Bareil R, Dokmeci MR, Merryman WD, Khademhosseini A. Hydrogels and microtechnologies for engineering the cellular microenvironment. Wires Nanomed Nanobiotechnol. 2012;4:235–46.CrossRefGoogle Scholar
  221. 221.
    Lu Z, Gao J, He Q, Wu J, Liang D, Yang H, et al. Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing. Carbohydr Polym. 2017;156:460–9.CrossRefGoogle Scholar
  222. 222.
    Winter GD. Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig. Nature. 1962;193:293–4.CrossRefGoogle Scholar
  223. 223.
    Qu X, Wirsén A, Albertsson AC. Novel pH-sensitive chitosan hydrogels: swelling behavior and states of water. Polymer. 2000;41(13):4841–7.CrossRefGoogle Scholar
  224. 224.
    Aguirre CI, Reguera E, Stein A. Tunable colors in opals and inverse opal photonic crystals. Adv Funct Mater. 2010;20:2565–78.CrossRefGoogle Scholar
  225. 225.
    Xia M, Cheng Y, Meng Z, Jiang X, Chen Z, Theato P, et al. A novel nanocomposite hydrogel with precisely tunable UCST and LCST. Macromol Rapid Commun. 2015;36(5):477–82.CrossRefGoogle Scholar
  226. 226.
    Hebeish A, Farag S, Sharaf S, Shaheen TI. Thermal responsive hydrogels based on semi interpenetrating network of poly (NIPAm) and cellulose nanowhiskers. Carbohydr Polym. 2014;102:159–66.CrossRefGoogle Scholar
  227. 227.
    Nucara L, Piazza V, Greco F, Robbiano V, Cappello V, Gemmi M, et al. Ionic strength responsive sulfonated polystyrene opals. ACS Appl Mater Interfaces. 2017;9(5):4818–27.CrossRefGoogle Scholar
  228. 228.
    Chen JK, Chang CJ. Fabrications and applications of stimulus-responsive polymer films and patter ns on surfaces: a review. Materials. 2014;7:805–75.CrossRefGoogle Scholar
  229. 229.
    Qiu X, Hu S. Smart materials based on cellulose: a review of the preparations, properties, and applications. Materials. 2013;6:738–81.CrossRefGoogle Scholar

Copyright information

© The Regenerative Engineering Society 2019

Authors and Affiliations

  1. 1.Department of Chemistry, North Tehran BranchIslamic Azad UniversityTehranIran

Personalised recommendations