Advertisement

A Bioengineered In Vitro Osteoarthritis Model with Tunable Inflammatory Environments Indicates Context-Dependent Therapeutic Potential of Human Mesenchymal Stem Cells

  • Patricia Diaz-Rodriguez
  • Josh Erndt-Marino
  • Hongyu Chen
  • Juan Felipe Diaz-Quiroz
  • Satyavrata Samavedi
  • Mariah S. HahnEmail author
Article
Part of the following topical collections:
  1. Special Edition: Quartet editor Guillermo Ameer

Abstract

Recently, intra-articular injections of mesenchymal stem cells (MSCs) have been used as a treatment for early osteoarthritis (OA) due to the known immunomodulatory effects of these cells. However, MSC therapy has shown variable clinical outcomes. This variability in efficacy likely reflects the interplay of a range of factors, which influence MSC immunoregulatory capacity. In particular, joint inflammatory state may impact MSC treatment efficacy due to the known dependence of the anti-inflammatory MSC phenotype on the levels of pro-inflammatory cytokines in the surrounding environment. To gain insight into the potential role of joint inflammatory state on MSC immunomodulatory effects, we first expanded a previously validated 3D in vitro model of OA to allow for tunable inflammatory conditions. We then utilized our expanded in vitro OA model to assess the therapeutic potential of MSCs in “high” (high-OA) versus “low” (low-OA) inflammatory contexts. The addition of MSCs to high-OA conditions stimulated significantly lower production of IL-1β, IFN-γ, MMP-9, and MMP-13 by osteoarthritic chondrocytes (OACs) and reduced macrophage activation. In contrast, the addition of MSCs to low-OA conditions increased OAC expression of OA-related markers IL-6 and IL-8 and induced a wound healing-like phenotype in macrophages. In addition to these results, we also assessed if MSCs primed with pro-inflammatory factors IFN-γ and TNF-α could improve MSC treatment efficacy in low-OA conditions. No improvements in MSC anti-inflammatory effects were observed for low-OA after priming. These findings suggest a key role for the inflammatory environment and MSC “activation” state in determining MSC immunomodulatory effects. If further validated, this knowledge could potentially be used to tailor the phenotype of injected MSCs to improve clinical outcomes.

Lay Summary

The inflammatory environment surrounding joint tissues is believed to underlie OA pathogenesis and may therefore hold a key to treatment. This work developed a system with control of inflammatory levels to assess OA therapies outside of living organisms. We then used this system to help study the therapeutic potential of mesenchymal stem cells (MSCs), an emergent yet controversial OA treatment. Our results suggest that MSC efficacy is context-dependent and sheds light on some of the specifics of these contexts. If further validated, this knowledge could potentially be used to screen patients and/or tailor the injected MSCs, improving clinical outcomes.

Description of Future Work

Future work will be focused on the further development and validation of this model system towards its use as a discovery/development tool for OA therapies.

Keywords

Mesenchymal stem cells In vitro 3D model Immunomodulation Osteoarthritis 

Notes

Funding Information

The authors would like to acknowledge funding from the NSF (award number 0955259 and 1508422) for MH and the Ajit Prabhu Fellowship from RPI for JEM.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

40883_2019_109_MOESM1_ESM.docx (289 kb)
ESM 1 (DOCX 288 kb)

References

  1. 1.
    Hustedt JW, Goltzer O, Bohl DD, Fraser JF, Lara NJ, Spangehl MJ. Calculating the cost and risk of comorbidities in total joint arthroplasty in the United States. J Arthroplast. 2017;32:355–361.e1.CrossRefGoogle Scholar
  2. 2.
    Losina E, Paltiel AD, Weinstein AM, Yelin E, Hunter DJ, Chen SP, et al. Lifetime medical costs of knee osteoarthritis management in the United States: impact of extending indications for total knee arthroplasty. Arthritis Care Res. 2015;67:203–15.CrossRefGoogle Scholar
  3. 3.
    Cross M, Smith E, Hoy D, Nolte S, Ackerman I, Fransen M, et al. The global burden of hip and knee osteoarthritis: estimates from the Global Burden of Disease 2010 Study. Ann Rheum Dis. 2014;73:1323–30.CrossRefGoogle Scholar
  4. 4.
    Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 2012;64:1697–707.CrossRefGoogle Scholar
  5. 5.
    Wenham CY, Conaghan PG. The role of synovitis in osteoarthritis. Ther Adv Musculoskelet Dis. 2010;2:349–59.CrossRefGoogle Scholar
  6. 6.
    Mathiessen A, Conaghan PG. Synovitis in osteoarthritis: current understanding with therapeutic implications. Arthritis Res Ther. 2017;19:18.CrossRefGoogle Scholar
  7. 7.
    Evans CH, Kraus VB, Setton LA. Progress in intra-articular therapy. Nat Rev Rheumatol. 2014;10:11–22.CrossRefGoogle Scholar
  8. 8.
    Kawakubo K, Ohnishi S, Kuwatani M, Sakamoto N. Mesenchymal stem cell therapy for acute and chronic pancreatitis. J Gastroenterol. 2018;53:1–5.CrossRefGoogle Scholar
  9. 9.
    Jevotovsky DS, Alfonso AR, Einhorn TA, Chiu ES. Osteoarthritis and stem cell therapy in humans: a systematic review. Osteoarthr Cartil. 2018;26:711–29.CrossRefGoogle Scholar
  10. 10.
    Xing D, Wang Q, Yang Z, Hou Y, Zhang W, Chen Y, et al. Mesenchymal stem cells injections for knee osteoarthritis: a systematic overview. Rheumatol Int. 2017.Google Scholar
  11. 11.
    Spasovski D, Spasovski V, Bascarevic Z, Stojiljkovic M, Vreca M, Andelkovic M, et al. Intra-articular injection of autologous adipose-derived mesenchymal stem cells in the treatment of knee osteoarthritis. J Gene Med. 2018;20.Google Scholar
  12. 12.
    Wang H, Yan X, Jiang Y, Wang Z, Li Y, Shao Q. The human umbilical cord stem cells improve the viability of OA degenerated chondrocytes. Mol Med Rep. 2018;17:4474–82.Google Scholar
  13. 13.
    Kadle RL, Abdou SA, Villarreal-Ponce AP, Soares MA, Sultan DL, David JA, et al. Microenvironmental cues enhance mesenchymal stem cell-mediated immunomodulation and regulatory T-cell expansion. PLoS One. 2018;13:e0193178.CrossRefGoogle Scholar
  14. 14.
    Kim DS, Jang IK, Lee MW, Ko YJ, Lee DH, Lee JW, et al. Enhanced immunosuppressive properties of human mesenchymal stem cells primed by interferon-gamma. EBioMedicine. 2018;28:261–73.CrossRefGoogle Scholar
  15. 15.
    Samavedi S, Diaz-Rodriguez P, Erndt-Marino JD, Hahn MS. A three-dimensional chondrocyte-macrophage coculture system to probe inflammation in experimental osteoarthritis. Tissue Eng Part A. 2017;23:101–14.CrossRefGoogle Scholar
  16. 16.
    Giunta S, Castorina A, Marzagalli R, Szychlinska MA, Pichler K, Mobasheri A, et al. Ameliorative effects of PACAP against cartilage degeneration. Morphological, immunohistochemical and biochemical evidence from in vivo and in vitro models of rat osteoarthritis. Int J Mol Sci. 2015;16:5922–44.CrossRefGoogle Scholar
  17. 17.
    Grenier S, Bhargava MM, Torzilli PA. An in vitro model for the pathological degradation of articular cartilage in osteoarthritis. J Biomech. 2014;47:645–52.CrossRefGoogle Scholar
  18. 18.
    Huang XB, Hou Y, Zhong LL, Huang DC, Qian HL, Karperien M, et al. Promoted chondrogenesis of cocultured chondrocytes and mesenchymal stem cells under hypoxia using in-situ forming degradable hydrogel scaffolds. Biomacromolecules. 2018;19:94–102.CrossRefGoogle Scholar
  19. 19.
    O'Conor CJ, Leddy HA, Benefield HC, Liedtke WB, Guilak F. TRPV4-mediated mechanotransduction regulates the metabolic response of chondrocytes to dynamic loading. Proc Natl Acad Sci U S A. 2014;111:1316–21.CrossRefGoogle Scholar
  20. 20.
    Bhumiratana S, Eton RE, Oungoulian SR, Wan LQ, Ateshian GA, Vunjak-Novakovic G. Large, stratified, and mechanically functional human cartilage grown in vitro by mesenchymal condensation. Proc Natl Acad Sci U S A. 2014;111:6940–5.CrossRefGoogle Scholar
  21. 21.
    Caron MMJ, Emans PJ, Coolsen MME, Voss L, Surtel DAM, Cremers A, et al. Redifferentiation of dedifferentiated human articular chondrocytes: comparison of 2D and 3D cultures. Osteoarthr Cartil. 2012;20:1170–8.CrossRefGoogle Scholar
  22. 22.
    Schulze-Tanzil G. Activation and dedifferentiation of chondrocytes: implications in cartilage injury and repair. Annals of Anatomy-Anatomischer Anzeiger. 2009;191:325–38.CrossRefGoogle Scholar
  23. 23.
    Bartneck M, Heffels KH, Pan Y, Bovi M, Zwadlo-Klarwasser G, Groll J. Inducing healing-like human primary macrophage phenotypes by 3D hydrogel coated nanofibres. Biomaterials. 2012;33:4136–46.CrossRefGoogle Scholar
  24. 24.
    Fioravanti A, Tinti L, Pascarelli NA, Di Capua A, Lamboglia A, Cappelli A, et al. In vitro effects of VA441, a new selective cyclooxygenase-2 inhibitor, on human osteoarthritic chondrocytes exposed to IL-1beta. J Pharmacol Sci. 2012;120:6–14.CrossRefGoogle Scholar
  25. 25.
    Zhou X, Li W, Jiang L, Bao J, Tao L, Li J, et al. Tetrandrine inhibits the Wnt/beta-catenin signalling pathway and alleviates osteoarthritis: an in vitro and in vivo study. Evid Based Complement Alternat Med. 2013;2013:809579.Google Scholar
  26. 26.
    Bondeson J, Wainwright S, Hughes C, Caterson B. The regulation of the ADAMTS4 and ADAMTS5 aggrecanases in osteoarthritis: a review. Clin Exp Rheumatol. 2008;26:139–45.Google Scholar
  27. 27.
    Flannery CR, Little CB, Caterson B, Hughes CE. Effects of culture conditions and exposure to catabolic stimulators (IL-1 and retinoic acid) on the expression of matrix metalloproteinases (MMPs) and disintegrin metalloproteinases (ADAMs) by articular cartilage chondrocytes. Matrix Biol. 1999;18:225–37.CrossRefGoogle Scholar
  28. 28.
    Reginato AM, Sanz-Rodriguez C, Diaz A, Dharmavaram RM, Jimenez SA. Transcriptional modulation of cartilage-specific collagen gene expression by interferon gamma and tumour necrosis factor alpha in cultured human chondrocytes. Biochem J. 1993;294 ( Pt 3:761–9.CrossRefGoogle Scholar
  29. 29.
    Varela-Eirín M, Varela-Vázquez A, Guitián-Caamaño A, Paíno CL, Mato V, Largo R, et al. Targeting of chondrocyte plasticity via connexin43 modulation attenuates cellular senescence and fosters a pro-regenerative environment in osteoarthritis. Cell Death Dis. 2018;9:1166–6.Google Scholar
  30. 30.
    Beekhuizen M, Bastiaansen-Jenniskens YM, Koevoet W, Saris DBF, Dhert WJA, Creemers LB, et al. Osteoarthritic synovial tissue inhibition of proteoglycan production in human osteoarthritic knee cartilage establishment and characterization of a long-term cartilage synovium-coculture. Arthritis Rheum. 2011;63:1918–27.CrossRefGoogle Scholar
  31. 31.
    de Lange-Brokaar BJ, Ioan-Facsinay A, van Osch GJ, Zuurmond AM, Schoones J, Toes RE, et al. Synovial inflammation, immune cells and their cytokines in osteoarthritis: a review. Osteoarthr Cartil. 2012;20:1484–99.CrossRefGoogle Scholar
  32. 32.
    Lopes EBP, Filiberti A, Husain SA, Humphrey MB. Immune contributions to osteoarthritis. Curr Osteoporos Rep. 2017;15:593–600.CrossRefGoogle Scholar
  33. 33.
    Jo CH, Lee YG, Shin WH, Kim H, Chai JW, Jeong EC, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells. 2014;32:1254–66.CrossRefGoogle Scholar
  34. 34.
    Lamo-Espinosa JM, Mora G, Blanco JF, Granero-Molto F, Nunez-Cordoba JM, Lopez-Elio S, et al. Intra-articular injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee osteoarthritis: long-term follow up of a multicenter randomized controlled clinical trial (phase I/II). J Transl Med. 2018;16:213.CrossRefGoogle Scholar
  35. 35.
    Lopa S, Colombini A, Moretti M, de Girolamo L. Injective mesenchymal stem cell-based treatments for knee osteoarthritis: from mechanisms of action to current clinical evidences. Knee Surg Sports Traumatol Arthrosc. 2018.Google Scholar
  36. 36.
    Munoz-Pinto DJ, Jimenez-Vergara AC, Hou Y, Hayenga HN, Rivas A, Grunlan M, et al. Osteogenic potential of poly(ethylene glycol)-poly(dimethylsiloxane) hybrid hydrogels. Tissue Eng Part A. 2012;18:1710–9.CrossRefGoogle Scholar
  37. 37.
    Robinson JL, McEnery MAP, Pearce H, Whitely ME, Munoz-Pinto DJ, Hahn MS, et al. Osteoinductive polyHIPE foams as injectable bone grafts. Tissue Eng A. 2016;22:403–14.CrossRefGoogle Scholar
  38. 38.
    Nuschke A, Rodrigues M, Wells AW, Sylakowski K, Wells A. Mesenchymal stem cells/multipotent stromal cells (MSCs) are glycolytic and thus glucose is a limiting factor of in vitro models of MSC starvation. Stem Cell Res Ther. 2016;7:179–9.Google Scholar
  39. 39.
    Jackson MV, Krasnodembskaya AD. Analysis of mitochondrial transfer in direct co-cultures of human monocyte-derived macrophages (MDM) and mesenchymal stem cells (MSC). Bio-protocol. 2017;7:e2255.CrossRefGoogle Scholar
  40. 40.
    Erndt-Marino J, Diaz-Rodriguez P, Hahn MS. Initial in vitro development of a potassium-based intra-articular injection for osteoarthritis. Tissue Eng Part A. 2018;24:1390–2.CrossRefGoogle Scholar
  41. 41.
    Aigner T, Soder S, Gebhard PM, McAlinden A, Haag J. Mechanisms of disease: role of chondrocytes in the pathogenesis of osteoarthritis—structure, chaos and senescence. Nat Clin Pract Rheumatol. 2007;3:391–9.CrossRefGoogle Scholar
  42. 42.
    Dreier R. Hypertrophic differentiation of chondrocytes in osteoarthritis: the developmental aspect of degenerative joint disorders. Arthritis Res Ther. 2010;12:216.CrossRefGoogle Scholar
  43. 43.
    Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 2011;7:33–42.CrossRefGoogle Scholar
  44. 44.
    Sellam J, Berenbaum F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol. 2010;6:625–35.CrossRefGoogle Scholar
  45. 45.
    van der Kraan PM, van den Berg WB. Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration? Osteoarthr Cartil. 2012;20:223–32.CrossRefGoogle Scholar
  46. 46.
    Wojdasiewicz P, Poniatowski LA, Szukiewicz D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediat Inflamm 2014; 2014: 561459, 1, 19.Google Scholar
  47. 47.
    Erndt-Marino J, Trinkle E, Hahn MS. Hyperosmolar potassium (K(+)) treatment suppresses osteoarthritic chondrocyte catabolic and inflammatory protein production in a 3-dimensional in vitro model. Cartilage. 2017;1947603517734028.Google Scholar
  48. 48.
    Bondeson J, Wainwright SD, Lauder S, Amos N, Hughes CE. The role of synovial macrophages and macrophage-produced cytokines in driving aggrecanases, matrix metalloproteinases, and other destructive and inflammatory responses in osteoarthritis. Arthritis Res Ther. 2006;8:R187.CrossRefGoogle Scholar
  49. 49.
    Chavez-Galan L, Olleros ML, Vesin D, Garcia I. Much more than M1 and M2 macrophages, there are also CD169(+) and TCR(+) macrophages. Front Immunol. 2015;6:263.Google Scholar
  50. 50.
    Gharat TP, Diaz-Rodriguez P, Erndt-Marino JD, Jimenez Vergara AC, Munoz Pinto DJ, Bearden RN, et al. A canine in vitro model for evaluation of marrow-derived mesenchymal stromal cell-based bone scaffolds. J Biomed Mater Res A. 2018;106:2382–93.CrossRefGoogle Scholar
  51. 51.
    Romieu-Mourez R, Francois M, Boivin MN, Bouchentouf M, Spaner DE, Galipeau J. Cytokine modulation of TLR expression and activation in mesenchymal stromal cells leads to a proinflammatory phenotype. J Immunol. 2009;182:7963–73.CrossRefGoogle Scholar
  52. 52.
    Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype. PLoS One. 2010;5:e10088.CrossRefGoogle Scholar
  53. 53.
    Waterman RS, Henkle SL, Betancourt AM. Mesenchymal stem cell 1 (MSC1)-based therapy attenuates tumor growth whereas MSC2-treatment promotes tumor growth and metastasis. PLoS One. 2012;7:e45590.CrossRefGoogle Scholar
  54. 54.
    Li W, Ren G, Huang Y, Su J, Han Y, Li J, et al. Mesenchymal stem cells: a double-edged sword in regulating immune responses. Cell Death Differ. 2012;19:1505–13.CrossRefGoogle Scholar
  55. 55.
    Leijs MJ, van Buul GM, Lubberts E, Bos PK, Verhaar JA, Hoogduijn MJ, et al. Effect of arthritic synovial fluids on the expression of immunomodulatory factors by mesenchymal stem cells: an explorative in vitro study. Front Immunol. 2012;3:231.CrossRefGoogle Scholar
  56. 56.
    Philipot D, Guerit D, Platano D, Chuchana P, Olivotto E, Espinoza F, et al. p16INK4a and its regulator miR-24 link senescence and chondrocyte terminal differentiation-associated matrix remodeling in osteoarthritis. Arthritis Res Ther. 2014;16:R58.CrossRefGoogle Scholar
  57. 57.
    McCulloch K, Litherland GJ, Rai TS. Cellular senescence in osteoarthritis pathology. Aging Cell. 2017;16:210–8.CrossRefGoogle Scholar
  58. 58.
    Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of cellular senescence. Trends Cell Biol. 2018;28:436–53.CrossRefGoogle Scholar
  59. 59.
    Klopfleisch R. Macrophage reaction against biomaterials in the mouse model—phenotypes, functions and markers. Acta Biomater. 2016;43:3–13.CrossRefGoogle Scholar
  60. 60.
    Roszer T. Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediat Inflamm. 2015;2015:816460.CrossRefGoogle Scholar
  61. 61.
    Melief SM, Schrama E, Brugman MH, Tiemessen MM, Hoogduijn MJ, Fibbe WE, et al. Multipotent stromal cells induce human regulatory T cells through a novel pathway involving skewing of monocytes toward anti-inflammatory macrophages. Stem Cells. 2013;31:1980–91.CrossRefGoogle Scholar
  62. 62.
    Cuerquis J, Romieu-Mourez R, Francois M, Routy JP, Young YK, Zhao J, et al. Human mesenchymal stromal cells transiently increase cytokine production by activated T cells before suppressing T-cell proliferation: effect of interferon-gamma and tumor necrosis factor-alpha stimulation. Cytotherapy. 2014;16:191–202.CrossRefGoogle Scholar
  63. 63.
    Cassano JM, Schnabel LV, Goodale MB, Fortier LA. Inflammatory licensed equine MSCs are chondroprotective and exhibit enhanced immunomodulation in an inflammatory environment. Stem Cell Res Ther. 2018;9:82.CrossRefGoogle Scholar
  64. 64.
    Kota DJ, DiCarlo B, Hetz RA, Smith P, Cox CS Jr, Olson SD. Differential MSC activation leads to distinct mononuclear leukocyte binding mechanisms. Sci Rep. 2014;4:4565.CrossRefGoogle Scholar
  65. 65.
    Sandler NA, Buckley MJ, Cillo JE, Braun TW. Correlation of inflammatory cytokines with arthroscopic findings in patients with temporomandibular joint internal derangements. J Oral Maxillofac Surg. 1998;56:534–43.CrossRefGoogle Scholar
  66. 66.
    Kirkham BW, Lassere MN, Edmonds JP, Juhasz KA, Bird PA, Lee CS, et al. Synovial membrane cytokine expression is predictive of joint damage progression in rheumatoid arthritis—a two-year prospective study (the DAMAGE study cohort). Arthritis Rheum. 2006;54:1122–31.CrossRefGoogle Scholar
  67. 67.
    Freitag J, Bates D, Boyd R, Shah K, Barnard A, Huguenin L, et al. Mesenchymal stem cell therapy in the treatment of osteoarthritis: reparative pathways, safety and efficacy—a review. BMC Musculoskelet Disord. 2016;17:230.CrossRefGoogle Scholar
  68. 68.
    Manferdini C, Maumus M, Gabusi E, Piacentini A, Filardo G, Peyrafitte JA, et al. Adipose-derived mesenchymal stem cells exert antiinflammatory effects on chondrocytes and synoviocytes from osteoarthritis patients through prostaglandin E2. Arthritis Rheum. 2013;65:1271–81.CrossRefGoogle Scholar
  69. 69.
    Topoluk N, Steckbeck K, Siatkowski S, Burnikel B, Tokish J, Mercuri J. Amniotic mesenchymal stem cells mitigate osteoarthritis progression in a synovial macrophage-mediated in vitro explant coculture model. J Tissue Eng Regen Med. 2018;12:1097–110.CrossRefGoogle Scholar
  70. 70.
    Ylostalo JH, Bartosh TJ, Coble K, Prockop DJ. Human mesenchymal stem/stromal cells cultured as spheroids are self-activated to produce prostaglandin E2 that directs stimulated macrophages into an anti-inflammatory phenotype. Stem Cells. 2012;30:2283–96.CrossRefGoogle Scholar
  71. 71.
    Davatchi F, Abdollahi BS, Mohyeddin M, Shahram F, Nikbin B. Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. Int J Rheum Dis. 2011;14:211–5.CrossRefGoogle Scholar
  72. 72.
    Gomez-Aristizabal A, Sharma A, Bakooshli MA, Kapoor M, Gilbert PM, Viswanathan S, et al. Stage-specific differences in secretory profile of mesenchymal stromal cells (MSCs) subjected to early- vs late-stage OA synovial fluid. Osteoarthr Cartil. 2017;25:737–41.CrossRefGoogle Scholar
  73. 73.
    Ouyang A, Cerchiari AE, Tang X, Liebenberg E, Alliston T, Gartner ZJ, et al. Effects of cell type and configuration on anabolic and catabolic activity in 3D co-culture of mesenchymal stem cells and nucleus pulposus cells. J Orthop Res. 2017;35:61–73.CrossRefGoogle Scholar
  74. 74.
    Gupta PK, Chullikana A, Rengasamy M, Shetty N, Pandey V, Agarwal V, et al. Efficacy and safety of adult human bone marrow-derived, cultured, pooled, allogeneic mesenchymal stromal cells (Stempeucel(R)): preclinical and clinical trial in osteoarthritis of the knee joint. Arthritis Res Ther. 2016;18:301.CrossRefGoogle Scholar
  75. 75.
    Qi Y, Feng G, Yan W. Mesenchymal stem cell-based treatment for cartilage defects in osteoarthritis. Mol Biol Rep. 2012;39:5683–9.CrossRefGoogle Scholar

Copyright information

© The Regenerative Engineering Society 2019

Authors and Affiliations

  • Patricia Diaz-Rodriguez
    • 1
  • Josh Erndt-Marino
    • 1
  • Hongyu Chen
    • 1
  • Juan Felipe Diaz-Quiroz
    • 1
  • Satyavrata Samavedi
    • 1
  • Mariah S. Hahn
    • 1
    Email author
  1. 1.Department of Biomedical EngineeringRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations