Advertisement

Journal of the Economic Science Association

, Volume 5, Issue 1, pp 97–111 | Cite as

Estimating the dynamic role of attention via random utility

  • Stephanie M. Smith
  • Ian KrajbichEmail author
  • Ryan Webb
Original Paper

Abstract

When making decisions, people tend to look back and forth between the alternatives until they eventually make a choice. Eye-tracking research has established that these shifts in attention are strongly linked to choice outcomes. A predominant framework for understanding the dynamics of the choice process, and thus the effects of attention, is sequential sampling of information. However, existing methods for estimating the attention parameters in these models are computationally costly and overly flexible, and yield estimates with unknown precision and bias. Here we propose an estimation method that relies on a link between sequential sampling models and random utility models (RUM). This method uses familiar econometric tools (i.e., logistic regression) and yields estimates that appear to be unbiased and relatively precise compared to existing methods, in a small fraction of the computation time. The RUM thus appears to be a useful tool for estimating the effects of attention on choice.

Keywords

Eye tracking Sequential sampling Diffusion model Random utility aDDM Attention 

JEL Classification

C81 C91 D87 

Notes

Acknowledgements

Funding was provided by the National Science Foundation Division of Social and Economic Sciences (Grant No. 1554837) and National Science Foundation (GRFP DGE-1343012).

References

  1. Amasino, D. R., Sullivan, N. J., Kranton, R. E., & Huettel, S. A. (2019). Amount and time exert independent influences on intertemporal choice. Nature Human Behaviour.  https://doi.org/10.1038/s41562-019-0537-2 CrossRefGoogle Scholar
  2. Arieli, A., Ben-Ami, Y., & Rubinstein, A. (2011). Tracking decision makers under uncertainty. American Economic Journal: Microeconomics, 3(4), 68–76.Google Scholar
  3. Armel, K. C., Beaumel, A., & Rangel, A. (2008). Biasing simple choices by manipulating relative visual attention. Judgment and Decision Making, 3(5), 396–403.Google Scholar
  4. Ashby, N. J. S., Jekel, M., Dickert, S., & Glöckner, A. (2016). Finding the right fit: A comparison of process assumptions underlying popular drift-diffusion models. Journal of Experimental Psychology: Learning, Memory, and Cognition.  https://doi.org/10.1037/xlm0000279.CrossRefGoogle Scholar
  5. Bagdziunaite, D., Nassri, K., Clement, J., & Ramsøy, T. Z. (2014). An added value of neuroscientific tools to understand consumers’ in-store behaviour. In EMAC 2014.Google Scholar
  6. Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. The Journal of Machine Learning Research, 13(1), 281–305.Google Scholar
  7. Cavanagh, J. F., Wiecki, T. V., Kochar, A., & Frank, M. J. (2014). Eye tracking and pupillometry are indicators of dissociable latent decision processes. Journal of Experimental Psychology: General, 143(4), 1476–1488.  https://doi.org/10.1037/a0035813.CrossRefGoogle Scholar
  8. Chen, W. J., & Krajbich, I. (2017). Computational modeling of epiphany learning. Proceedings of the National Academy of Sciences, 114(18), 4637–4642.  https://doi.org/10.1073/pnas.1618161114.CrossRefGoogle Scholar
  9. Chiong, K., Shum, M., Webb, R., & Chen, R. (2018). Split-second decision-making in the field: Response times in mobile advertising. SSRN Working Paper.Google Scholar
  10. Devetag, G., Di Guida, S., & Polonio, L. (2016). An eye-tracking study of feature-based choice in one-shot games. Experimental Economics, 19(1), 177–201.CrossRefGoogle Scholar
  11. Echenique, F., & Saito, K. (2017). Response time and utility. Journal of Economic Behavior & Organization, 139, 49–59.  https://doi.org/10.1016/j.jebo.2017.04.008.CrossRefGoogle Scholar
  12. Fehr, E., & Rangel, A. (2011). Neuroeconomic foundations of economic choice—Recent advances. The Journal of Economic Perspectives, 25(4), 3–30.CrossRefGoogle Scholar
  13. Fisher, G. (2017). An attentional drift diffusion model over binary-attribute choice. Cognition, 168, 34–45.  https://doi.org/10.1016/j.cognition.2017.06.007.CrossRefGoogle Scholar
  14. Fudenberg, D., Strack, P., & Strzalecki, T. (2018). Speed, accuracy, and the optimal timing of choices. American Economic Review, 108(12), 3651–3684.  https://doi.org/10.1257/aer.20150742.CrossRefGoogle Scholar
  15. Gabaix, X. (2017). Behavioral Inattention (No. w24096). Cambridge, MA: National Bureau of Economic Research.  https://doi.org/10.3386/w24096.CrossRefGoogle Scholar
  16. Gossner, C., Steiner, J., & Stewart, C. (2018). Attention Please!*, 34. Working paper, University of Toronto Department of EconomicsGoogle Scholar
  17. Harwood, T., & Jones, M. (2014). Mobile eye-tracking in retail research. In M. Horsley, M. Eliot, B. A. Knight, & R. Reilly (Eds.), Current trends in eye tracking research (pp. 183–199). Cham: Springer.  https://doi.org/10.1007/978-3-319-02868-2_14.CrossRefGoogle Scholar
  18. Knoepfle, D. T., Tao-yi Wang, J., & Camerer, C. F. (2009). Studying learning in games using eye-tracking. Journal of the European Economic Association, 7(2–3), 388–398.  https://doi.org/10.1162/JEEA.2009.7.2-3.388.CrossRefGoogle Scholar
  19. Konovalov, A., & Krajbich, I. (2016). Gaze data reveal distinct choice processes underlying model-based and model-free reinforcement learning. Nature Communications, 7, 12438.  https://doi.org/10.1038/ncomms12438.CrossRefGoogle Scholar
  20. Krajbich, I., Armel, C., & Rangel, A. (2010). Visual fixations and the computation and comparison of value in simple choice. Nature Neuroscience, 13(10), 1292–1298.  https://doi.org/10.1038/nn.2635.CrossRefGoogle Scholar
  21. Krajbich, I., Lu, D., Camerer, C., & Rangel, A. (2012). The attentional drift-diffusion model extends to simple purchasing decisions. Frontiers in Psychology, 3. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3374478/.
  22. Krajbich, I., Oud, B., & Fehr, E. (2014). Benefits of neuroeconomic modeling: New policy interventions and predictors of preference. The American Economic Review, 104(5), 501–506.CrossRefGoogle Scholar
  23. Krajbich, I., & Rangel, A. (2011). Multialternative drift-diffusion model predicts the relationship between visual fixations and choice in value-based decisions. Proceedings of the National Academy of Sciences, 108(33), 13852–13857.  https://doi.org/10.1073/pnas.1101328108.CrossRefGoogle Scholar
  24. Lahey, J. N., & Oxley, D. (2016). The power of eye tracking in economics experiments. American Economic Review, 106(5), 309–313.  https://doi.org/10.1257/aer.p20161009.CrossRefGoogle Scholar
  25. Pärnamets, P., Johansson, P., Hall, L., Balkenius, C., Spivey, M. J., & Richardson, D. C. (2015). Biasing moral decisions by exploiting the dynamics of eye gaze. Proceedings of the National Academy of Sciences, 112(13), 4170–4175.CrossRefGoogle Scholar
  26. Polonio, L., Di Guida, S., & Coricelli, G. (2015). Strategic sophistication and attention in games: An eye-tracking study. Games and Economic Behavior, 94, 80–96.  https://doi.org/10.1016/j.geb.2015.09.003.CrossRefGoogle Scholar
  27. Reutskaja, E., Nagel, R., Camerer, C. F., & Rangel, A. (2011). Search dynamics in consumer choice under time pressure: An eye-tracking study. American Economic Review, 101(2), 900–926.  https://doi.org/10.1257/aer.101.2.900.CrossRefGoogle Scholar
  28. Shi, S. W., Wedel, M., & Pieters, F. G. M. (2013). Information acquisition during online decision making: A model-based exploration using eye-tracking data. Management Science, 59(5), 1009–1026.CrossRefGoogle Scholar
  29. Sims, C. A. (2003). Implications of rational inattention. Journal of Monetary Economics, 50(3), 665–690.  https://doi.org/10.1016/S0304-3932(03)00029-1.CrossRefGoogle Scholar
  30. Smith, S. M., & Krajbich, I. (2018). Attention and choice across domains. Journal of Experimental Psychology: General.  https://doi.org/10.1037/xge0000482.CrossRefGoogle Scholar
  31. Smith, S. M., & Krajbich, I. (2019). Gaze amplifies value in decision making. Psychological Science, 30(1), 116–128.  https://doi.org/10.1177/0956797618810521.CrossRefGoogle Scholar
  32. Stewart, N., Hermens, F., & Matthews, W. J. (2015). Eye movements in risky choice. Journal of Behavioral Decision Making. Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/bdm.1854/full.
  33. Towal, R. B., Mormann, M., & Koch, C. (2013). Simultaneous modeling of visual saliency and value computation improves predictions of economic choice. Proceedings of the National Academy of Sciences, 110(40), E3858–E3867.CrossRefGoogle Scholar
  34. Vaidya, A. R., & Fellows, L. K. (2015). Testing necessary regional frontal contributions to value assessment and fixation-based updating. Nature Communications, 6, 10120.  https://doi.org/10.1038/ncomms10120.CrossRefGoogle Scholar
  35. Wang, J. T., Spezio, M., & Camerer, C. F. (2010). Pinocchio’s pupil: Using eye tracking and pupil dilation to understand truth telling and deception in sender-receiver games. American Economic Review, 100(3), 984–1007.  https://doi.org/10.1257/aer.100.3.984.CrossRefGoogle Scholar
  36. Webb, R. (2019). The (neural) dynamics of stochastic choice. Management Science, 65(1), 230–255.  https://doi.org/10.1287/mnsc.2017.2931.CrossRefGoogle Scholar
  37. Woodford, M. (2014). Stochastic choice: An optimizing neuroeconomic model. The American Economic Review, 104(5), 495–500.CrossRefGoogle Scholar

Copyright information

© Economic Science Association 2019

Authors and Affiliations

  1. 1.Department of PsychologyThe Ohio State UniversityColumbusUSA
  2. 2.Department of EconomicsThe Ohio State UniversityColumbusUSA
  3. 3.Rotman School of ManagementUniversity of TorontoTorontoCanada

Personalised recommendations