A zero-dimensional not strongly zero-dimensional X with Lindelöf Open image in new window

  • Oleg OkunevEmail author
  • Alfredo Sánchez Jiménez
Research Article


We prove, modifying Dowker’s example, that there exists a normal space X such that Open image in new window is Lindelöf, X is zero-dimensional and is not strongly zero-dimensional.


Topology of pointwise convergence Lindelöf spaces Zero-dimensional spaces 

Mathematics Subject Classification

54C35 54D20 54G20 



The authors thank the Referees for careful examination of the article and indispensably useful comments.


  1. 1.
    Alster, K., Pol, R.: On function spaces of compact subspaces of \(\Sigma \)-products of the real line. Fund. Math. 107(2), 135–143 (1980)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Arkhangel’skiĭ, A.V.: Topological Function Spaces. Mathematics and its Applications (Soviet Series), vol. 78. Kluwer, Dordrecht (1992)Google Scholar
  3. 3.
    Engelking, R.: General Topology. Sigma Series in Pure Mathematics, vol. 6. Helderman, Berlin (1989)zbMATHGoogle Scholar
  4. 4.
    Okunev, O.: The Lindelöf number of \(C_{\!p}(X)\times C_{\!p}(X)\) for strongly zero-dimensional \(X\). Cent. Eur. J. Math. 9(5), 978–983 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Okunev, O., Tamano, K.: Lindelöf powers and products of function spaces. Proc. Amer. Math. Soc. 124(9), 2905–2916 (1996)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Benemérita Universidad Autónoma de PueblaPueblaMexico

Personalised recommendations