Advertisement

Higher holonomy maps for hyperplane arrangements

  • Toshitake KohnoEmail author
Research/Review Article

Abstract

We develop a method to construct representations of the homotopy 2-groupoid of a manifold as a 2-category by means of Chen’s formal homology connections. As an application we describe 2-holonomy maps for hyperplane arrangements and discuss representations of the category of braid cobordisms.

Keywords

Braid group Iterated integral Formal homology connection Hyperplane arrangement Higher holonomy 2-Category Braid cobordism 

Mathematics Subject Classification

20F36 57M25 55P62 

Notes

References

  1. 1.
    Baez, J.C., Huerta, J.: An invitation to higher gauge theory. Gen. Relativity Gravitation 43(9), 2335–2392 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Carter, J.S., Saito, M.: Knotted Surfaces and Their Diagrams. Mathematical Surveys and Monographs, vol. 55. American Mathematical Society, Providence (1998)zbMATHGoogle Scholar
  3. 3.
    Chen, K.: Iterated integrals of differential forms and loop space homology. Ann. Math. 97, 217–246 (1973)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chen, K.-T.: Extension of \(C^{\infty }\) function algebra by integrals and Malcev completion of \(\pi _1\). Adv. Math. 23(2), 181–210 (1977)CrossRefGoogle Scholar
  5. 5.
    Chen, K.T.: Iterated path integrals. Bull. Amer. Math. Soc. 83(5), 831–879 (1977)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chmutov, S., Duzhin, S., Mostovoy, J.: Introduction to Vassiliev Knot Invariants. Cambridge University Press, Cambridge (2012)CrossRefGoogle Scholar
  7. 7.
    Cirio, L.S., Faria Martins, J.: Categorifying the Knizhnik–Zamolodchikov connection. Differential Geom. Appl. 30(3), 238–261 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cirio, L.S., Faria Martins, J.: Categorifying the \({{\mathfrak{s}}{\mathfrak{l}}}(2; {{\mathbb{C}}})\) Knizhnik–Zamolodchikov connection via an infinitesimal 2-Yang–Baxter operator in the string Lie-2-Algebra. Adv. Theor. Math. Phys. 21(1), 147–229 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Deligne, P., Griffiths, P., Morgan, J., Sullivan, D.: Real homotopy theory of Kähler manifolds. Invent. Math. 29(3), 245–274 (1975)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kamada, S.: Braid and Knot Theory in Dimension Four. Mathematical Surveys and Monographs, vol. 95. American Mathematical Society, Providence (2002)CrossRefGoogle Scholar
  11. 11.
    Kohno, T.: On the holonomy Lie algebra and the nilpotent completion of the fundamental group of the complement of hypersurfaces. Nagoya Math. J. 92, 21–37 (1983)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kohno, T.: Monodromy representations of braid groups and Yang–Baxter equations. Ann. Inst. Fourier (Grenoble) 37(4), 139–160 (1987)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kohno, T.: Vassiliev invariants of braids and iterated integrals. In: Falk, M., Terao, H. (eds.) Arrangements—Tokyo 1998. Advanced Studies in Pure Mathematics, vol. 27, pp. 157–168. Kinokuniya, Tokyo (2000)CrossRefGoogle Scholar
  14. 14.
    Kohno, T.: Bar complex of the Orlik–Solomon algebra. Topology Appl. 118(1–2), 147–157 (2002)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kohno, T.: Higher holonomy of formal homology connections and braid cobordisms. J. Knot Theory Ramifications 26(12), # 1642007 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kontsevich, M.: Vassiliev’s knot invariants. In: Gel’fand, S., Gindikin, S. (eds.) I.M. Gel’fand Seminar. Advances in Soviet Mathematics, pp. 137–150. American Mathematical Society, Providence (1993)CrossRefGoogle Scholar
  17. 17.
    Le, T.Q.T., Murakami, J.: Representation of the category of tangles by Kontsevich’s iterated integral. Comm. Math. Phys. 168(3), 535–562 (1995)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Orlik, P., Terao, H.: Arrangements of Hyperplanes. Grundlehren der Mathematischen Wissenschaften, vol. 300. Springer, Berlin (1992)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Kavli IPMU, Graduate School of Mathematical SciencesThe University of TokyoMeguro-kuJapan

Personalised recommendations