On the integrality of Seshadri constants of abelian surfaces

  • Thomas BauerEmail author
  • Felix Fritz Grimm
  • Maximilian Schmidt
Research Article


We consider the question of when Seshadri constants on abelian surfaces are integers. Our first result concerns self-products \(E\times E\) of elliptic curves: if E has complex multiplication in \({\mathbb {Z}}[i]\) or in \({\mathbb {Z}}[(1\,{+}\,i\sqrt{3})/2]\) or if E has no complex multiplication at all, then it is known that for every ample line bundle L on Open image in new window , the Seshadri constant \(\varepsilon (L)\) is an integer. We show that, contrary to what one might expect, these are in fact the only elliptic curves for which this integrality statement holds. Our second result answers the question how—on any abelian surface—integrality of Seshadri constants is related to elliptic curves.


Abelian surface Elliptic curve Complex multiplication Seshadri constant Integral 

Mathematics Subject Classification

14C20 14H52 14Jxx 14Kxx 



  1. 1.
    Bauer, Th.: Seshadri constants and periods of polarized abelian varieties. Math. Ann. 312(4), 607–618 (1998)Google Scholar
  2. 2.
    Bauer, Th.: Seshadri constants on algebraic surfaces. Math. Ann. 313(3), 547–583 (1999)Google Scholar
  3. 3.
    Bauer, Th., Di Rocco, S., Harbourne, B., Kapustka, M., Knutsen, A.L., Syzdek, W., Szemberg, T.: A primer on Seshadri constants. In: Bates, D.J., et al. (eds.) Interactions of Classical and Numerical Algebraic Geometry. Contemporary Mathematics, vol. 496, pp. 33–70. American Mathematical Society, Providence (2009)Google Scholar
  4. 4.
    Bauer, Th., Schulz, C.: Seshadri constants on the self-product of an elliptic curve. J. Algebra 320(7), 2981–3005 (2008)Google Scholar
  5. 5.
    Bauer, Th., Szemberg, T.: Appendix: Seshadri constants of abelian surfaces. Math. Ann. 312, 618–623 (1998)Google Scholar
  6. 6.
    Birkenhake, C., Lange, H.: Complex abelian Varieties. Grundlehren der Mathematischen Wissenschaften, vol. 302, 3rd edn. Springer, Berlin (2010)zbMATHGoogle Scholar
  7. 7.
    Hayashida, T., Nishi, M.: Existence of curves of genus two on a product of two elliptic curves. J. Math. Soc. Japan 17, 1–16 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Lazarsfeld, R.: Lengths of periods and Seshadri constants of abelian varieties. Math. Res. Lett. 3(4), 439–447 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Lazarsfeld, R.: Positivity in Algebraic Geometry, Vol. I. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge. A., Vol. 48. Springer, Berlin (2004)Google Scholar
  10. 10.
    Mumford, D.: On the equations defining abelian varieties. I. Invent. Math. 1(4), 287–354 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Nakamaye, M.: Seshadri constants on abelian varieties. Amer. J. Math. 118(3), 621–635 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Steffens, A.: Remarks on Seshadri constants. Math. Z. 227(3), 505–510 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Weil, A.: Variétés Abéliennes et Courbes Algebriqes. Hermann, Paris (1948)zbMATHGoogle Scholar
  14. 14.
    Weil, A.: Zum Beweis des Torellischen Satzes. Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. IIa 1957, 33–53 (1957)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Fachbereich Mathematik und InformatikPhilipps-Universität MarburgMarburgGermany

Personalised recommendations