Finsleroids with three axes in dimension \(N=3\)

  • Gennadii S. AsanovEmail author
Research Article


We study the dependence of three-axes positive-definite Finsleroid metric functions on the Finsleroid azimuthal angle \(\theta \) in the three-dimensional case, provided the condition of the angle-separation in the involved characteristic functions is fulfilled. The complete set of algebraic and differential equations characterizing the class of three-axes positive-definite Finsleroid metric functions is derived and explicit dependence of the involved characteristic functions on the angle \(\theta \) is obtained.


Finsler geometry Finsler metrics Metric spaces 

Mathematics Subject Classification

53B40 53C60 



  1. 1.
    Asanov, G.S.: Finsler Geometry, Relativity and Gauge. Theories Fundamental Theories of Physics. D. Reidel, Dordrecht (1985)CrossRefzbMATHGoogle Scholar
  2. 2.
    Asanov, G.S.: Finsler connection properties generated by the two-vector angle developed on the indicatrix-inhomogeneous level. Publ. Math. Debrecen 82(1), 125–155 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Asanov, G.S.: Pseudo-Finsleroid metric function of spatially anisotropic relativistic type (2015). arXiv:1512.02268
  4. 4.
    Asanov, G.S.: Pseudo-Finsleroid metrics with two axes. Eur. J. Math. 3(4), 1076–1097 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Asanov, G.S.: Two-axes pseudo-Finsleroid metrics: general overview and angle-regular solution (2017). arXiv:1709.02683
  6. 6.
    Bao, D., Chern, S.-S., Shen, Z.: An Introduction to Riemann–Finsler Geometry. Graduate Texts in Mathematics, vol. 200. Springer, New York (2000)Google Scholar
  7. 7.
    Berwald, L.: Über Finslerische und verwandte Räume. Čas. Mat. Fys. 64, 1–16 (1935)zbMATHGoogle Scholar
  8. 8.
    Busemann, H.: The geometry of Finsler spaces. Bull. Amer. Math. Soc. 56(1), 5–16 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cartan, E.: Les Espaces de Finsler. Actualités Scientifiques et Industrielles, vol. 79. Hermann, Paris (1934)Google Scholar
  10. 10.
    Horváth, J.I.: New geometrical methods of the theory of physical fields. Nuovo Cimento 9, 444–496 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ingarden, R.S.: On physical applications of Finsler geometry. In: Bao, D., Chern, S., Shen, Z. (eds.) Finsler Geometry. Contemporary Mathematics, vol. 196, pp. 213–223. American Mathematical Society, Providence (1996)CrossRefGoogle Scholar
  12. 12.
    Matveev, V.S., Papadopoulos, A., Rademacher, H.-B., Sabau, S.V. (eds.): Special issue “Finsler geometry, new methods and perspectives”. Eur. J. Math. 3(4) (2017)Google Scholar
  13. 13.
    Rund, H.: The Differential Geometry of Finsler Spaces. Die Grundlehren der Mathematischen Wissenschaften, vol. 101. Springer, Berlin (1959)CrossRefGoogle Scholar
  14. 14.
    Vincze, Cs.: On Asanov’s Finsleroid–Finsler metrics as the solutions of a conformal rigidity problem. Differ. Geom. Appl. 53, 148–168 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of Theoretical PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations