European Journal of Mathematics

, Volume 5, Issue 3, pp 712–719 | Cite as

On the problem of differentiation of hyperelliptic functions

  • Elena Yu. BunkovaEmail author
Research Article


We describe a construction that leads to an explicit solution of the problem of differentiation of hyperelliptic functions. A classical genus \(g=1\) example of such a solution is the result of Frobenius and Stickelberger (J Reine Angew Math 92:311–337, 1882). Our method follows the works Buchstaber (Proc Steklov Inst Math 294:176–200, 2016) and Bunkova (Eur J Math 4(1):93–112, 2018) that led to constructions of explicit solutions of the problem for genus \(g=2\) and \(g=3\).


Abelian functions Elliptic functions Jacobians Hyperelliptic curves Hyperelliptic functions Lie algebra of derivations Polynomial vector fields 

Mathematics Subject Classification

14H52 32N99 33E05 58J26 



  1. 1.
    Arnold, V.I.: Singularities of Caustics and Wave Fronts. Mathematics and its Applications (Soviet Series), vol. 62. Kluwer, Dordrecht (1990)Google Scholar
  2. 2.
    Baker, H.F.: On the hyperelliptic sigma functions. Amer. J. Math. 20(4), 301–384 (1898)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Buchstaber, V.M.: Polynomial dynamical systems and Korteweg–de Vries equation. Proc. Steklov Inst. Math. 294, 176–200 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Buchstaber, V.M., Enolskiĭ, V.Z., Leĭkin, D.V.: Hyperelliptic Kleinian functions and applications. In: Buchstaber, V.M., Novikov, S.P. (eds.) Solitons, Geometry and Topology: On the Crossroad. American Mathematical Society Translations Series 2, vol. 179, pp. 1–33. American Mathematical Society, Providence (1997)Google Scholar
  5. 5.
    Buchstaber, V.M., Enolskii, V.Z., Leykin, D.V.: Kleinian functions, hyperelliptic Jacobians and applications. In: Novikov, S.P., Krichever, I.M. (eds.) Reviews in Mathematics and Mathematical Physics, vol. 10, no 2, pp. 3–120. Gordon and Breach, London (1997)Google Scholar
  6. 6.
    Buchstaber, V.M., Enolskii, V.Z., Leykin, D.V.: Multi-dimensional sigma-functions (2012). arXiv:1208.0990
  7. 7.
    Buchstaber, V., Enolskii, V., Leykin, D.: Multi-variable sigma-functions: old and new results (2018). arXiv: 1810.11079
  8. 8.
    Buchstaber, V.M., Leykin, D.V.: Polynomial Lie algebras. Funct. Anal. Appl. 36(4), 267–280 (2002)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Buchstaber, V.M., Leykin, D.V.: Differentiation of Abelian functions with respect to parameters. Russian Math. Surveys 62(4), 787–789 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Buchstaber, V.M., Leĭkin, D.V.: Solution of the problem of differentiation of Abelian functions over parameters for families of \((n, s)\)-curves. Funct. Anal. Appl. 42(4), 268–278 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Buchstaber, V.M., Mikhailov, A.V.: Infinite-dimensional Lie algebras determined by the space of symmetric squares of hyperelliptic curves. Funct. Anal. Appl. 51(1), 2–21 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Bunkova, E.Yu.: Differentiation of genus 3 hyperelliptic functions. Eur. J. Math. 4(1), 93–112 (2018)Google Scholar
  13. 13.
    Dubrovin, B.A., Novikov, S.P.: A periodic problem for the Korteweg–de Vries and Sturm–Liouville equations. Their connection with algebraic geometry. Dokl. Akad. Nauk SSSR 219(3), 531–534 (1974) (in Russian)Google Scholar
  14. 14.
    Frobenius, F.G., Stickelberger, L.: Ueber die Differentiation der elliptischen Functionen nach den Perioden und Invarianten. J. Reine Angew. Math. 92, 311–337 (1882)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge Mathematical Library, 4th edn. Cambridge University Press, Cambridge (1996)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations